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Johnson, Michael Paul (M. S., Electrical Engineering)

Beyond DES:  Data Compression and the MPJ Encryption Algorithm

Thesis directed by Assistant Professor Mark A. Wickert

Many encryption algorithms have come and gone as cryptography,

cryptanalysis, and technology have progressed.  Today’s communication and computer

technologies need cryptography to truly secure data in many applications. The demands

on the cryptography needed for some commercial applications will exceed the security

offered by the National Bureau of Standards Data Encryption Standard (DES) in the near

future due to advances in technology, advances in cryptanalysis, and the increasing rewards

for breaking such a heavily used algorithm.  To meet part of this need, a new block

encryption algorithm is proposed.  A Pascal program to implement this algorithm is given.

One way to further increase security of encrypted data, as well as to achieve

storage and/or transmission economy, is by redundancy reduction prior to encryption.  A

linguistic approach to redundancy reduction, together with an example computer program

to implement it, is given for this purpose.
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I.   INTRODUCTION

The increasing proliferation of digital communication and computer data base

storage has brought with it increasing difficulty of maintaining the privacy of that data.

There is only one effective way to protect the privacy of communications sent over such

channels as satellites, terrestrial microwave, and cellular telephones.  This is by encryption.

It is clearly impossible to deny unauthorized access by a determined and knowledgeable

interceptor to the communications, but it is possible to render the communications totally

unintelligible to all but the intended receiver(s).

There are many ways to reversibly transform data from its plain form to

something that looks unintelligible, but many of these can be figured out (broken) by

someone else.  The study of how to hide secrets is cryptology. Trying to figure out the

secrets that someone else has hidden is cryptanalysis.  These two sciences are, of course,

very much intertwined. History reveals many examples of cryptology that worked, and

that didn’t [KAH]. Successful cryptanalysis depends on taking advantage of as many of

the following as are available to the cryptanalyst: (1) taking advantage of the redundancy

in any natural language to determine the validity of assumptions, (2) clues gained from

corresponding plain and cipher text, (3) information that might be known about the

algorithm(s) used, (4) the general expected content of the cryptograms, (5) all of the cipher

text that is available in the same system & key, (6) compromised keys, (7) as much

computational and analytical power as can be obtained, and (8) mistakes made in the users

of the cryptographic system.  The cryptographer can make life as difficult as possible for

the cryptanalyst by depriving him of some of these things by (1) using redundancy
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reduction before encryption, (2) using an algorithm that is resistant to the known plain text

attack, (3) & (4) using a strong enough algorithm that these clues aren’t really useful, (5)

changing keys often and selecting them properly, (6) guarding keys as closely as the data

they protect justifies, (7) ensuring that there aren’t enough computers in the world to do a

brute force attack on the algorithm, and (8) making sure users of the system understand

how to properly use it.

This thesis proposes one solution to the above challenge by proposing (1) an

approach to linguistically based redundancy reduction, and (2) proposing a new data

encryption algorithm (MPJ) that can be used where the National Bureau of Statndards Data

Encryption Standard (DES) is in use now, but is more secure.

A.  Motivation

There has been a great deal of discussion of the security of DES in the open

literature.  Most of it has been favorable to DES [MEY], but there are a few indications

that it would be wise to supplement the aging DES and eventually replace it.

DES has been in use since 1977, and has been used in a large number of

applications where people have had many possible motivations for trying to break this

cipher.  During this time, it is possible that someone has discovered a computationally

feasible method for doing so [KRU].  Under such circumstances, it is highly unlikely that

such a discovery would be made known.  There is no way to really know this for sure,

unless you are one of the ones who has broken DES.  The closest thing that I have found

to an open admission of breaking DES is a story of the FBI successfully decrypting a file

of drug transaction records that were encrypted on a PC using a DES board [MCL]. The
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DES board that the criminal used has an algorithm to generate a key from a word or phrase.

By an exhaustive search of an English dictionary and key names from the criminal’s family

& friends using a supercomputer, the file was solved.  This indicates some weakness in

DES, but even more weakness in the way the key was chosen. The key was not chosen

randomly, so the FBI’s job was much easier.

DES is subject to attacks that require precomputation that could tie up a

supercomputer for a few years, after which it would take only a few days to solve a DES

cryptogram.  This is becoming less of a barrier as the price of computers drops and the

speed and storage capacity of computers increase.

The U. S. National Security Agency (NSA) is acting to release some  of  its own

algorithms for ‘‘sensitive but unclassified’’ applications, such as communications between

government contractors [NEW].  The NSA also releases some classified algorithms to chip

manufacturers for use in classified devices, but under strict controls [ULT].  This will take

some of the load off of the DES algorithm, but there is a catch.  They intend to keep the

algorithms secret and control the keys.  Since the security of the algorithm is dependent

on the key in a way that only  the NSA  knows, this gives the NSA the exclusive ability to

read everybody’s communications.  That is not all bad, as it discourages the use of one of

those systems by someone engaged in spying or other illegal activity.  Unfortunately, these

systems are not an option for protection of a corporations proprietary data that may have

a great deal to do  with profits and  losses, but are not really in the domain of the NSA.
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There are other alternatives to DES now, but none of them in the public domain

are even as good, let alone better, for general cryptography.  For example, RSA encryption

(an exponential encryption algorithm named after the initials of its inventors) has great

advantages in the authentication of digital signatures, but the complications of selecting

good keys and the fact that the security of RSA relies heavily on the failure of the state of

the art in mathematics to progress makes it at least inconvenient to use and at most insecure.

Because of the above considerations, it is my intention to suggest a better

algorithm (MPJ) for general use in the private sector.  Although the MPJ algorithm might

be useful for government applications, too, the design requirements for the two areas of

application vary [CHA] and the latter is kept shrouded in secrecy, so we shall leave it to

the NSA.

B.  Approach

First, the problem is defined.  As explained in the above section, the basic

problem is to create an algorithm to supplement DES.  Design criteria are then conceived

such that an algorithm that meets those criteria will solve the problem as defined.  The

design criteria chosen for the MPJ algorithm are discussed in chapter VI.  To avoid

repetition of one or more of the many mistakes that have been made throughout history

with cryptography, it is, of course, necessary to research what was done in the past, both

distant and recent.  From this, many good ideas can be gleaned that apply to the problem

at hand.  These ideas, along with a knowledge of current technology are then applied to

design criteria with a bit of creativity and a lot of hard work to define the new algorithm.
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In the process of doing all of the above, it became apparent that the security of

encrypted data was vastly improved by first removing as much redundancy from the data

as possible.  Therefore, as sort of a bonus, a linguistic approach to data compression is also

presented that can either be used in conjunction with the MPJ encryption algorithm, another

encryption method, or just by itself for the savings that it gains in communications channel

capacity and/or data storage space.
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II.       HISTORY OF CRYPTOGRAPHY

One of the best works on the history of cryptography is The Codebreakers, by

David Kahn [KAH].  In that book, David Kahn discusses cryptography from prehistory to

World War II.  The first codes and ciphers were in written form, and used to protect the

privacy of communications sent by courier or mail through hostile or unknown territory.

Some of these were reasonably good, but most were not difficult to break using manual

methods, provided that the interceptor had sufficient cipher text and perhaps some probable

text.  The use of radio, especially by the military, increased the need for cryptography, as

well as increasing the rewards for those who could break the encryption schemes in use.

Kahn’s documentation of the efforts of those who broke some very complex encryption

schemes, like the German Enigma and the Japanese Purple Ciphers, lend great insight to

the kind of process cryptanalysis really is.

Kahn points out the kinds of mistakes the inventors and users of cryptographic

algorithms tend to make that reduce the security of their communications.  For example,

German users of Enigma tended to choose a three-letter indicator for their messages that

consisted of three consecutive letters on the keyboard.  This substantially reduced the

number of keys that had to be searched to determine the one that they were using.  While

the designer of an algorithm may calculate the great number of combinations of keys that

there are, the cryptanalyst looks at ways to isolate parts of the key so that the difficulty of

a solution is much less than the size of the key space indicates.  The difference in mind set

between the concealer of secrets and the one who prys into them has caused many an

inventor of an encryption algorithm to be overconfident.
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The job of the cryptanalyst is a tedious one.  He tries all kinds of things to try

to unscramble the cipher text in front of him.  Sometimes the search is fruitless.  Sometimes

the search yields something that looks like a meaningful language.  It is this ability to

recognize a meaningful message when it comes out of the various operations that the

cryptanalyst tries that makes the whole process possible.  It is also helpful for the

cryptanalyst to know some probable plain text that is contained in a message.  This is almost

always the case.  For example, military messages even now have a very stereotyped format,

with the from, to, and date indicators in the same places in the message. The cryptanalyst

almost always knows what language to expect a message to be written in, and this is a great

help.  Natural languages contain a great deal of redundancy.  A message that is only 90%

recovered is usually readable.  Natural languages also have very consistent statistical

properties that are very useful in cryptanalysis, especially when the cryptanalysis is

automated.  The only time that these things don’t help the cryptanalyst is in the ‘‘one-time

pad.’’
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III.      ELEMENTS OF ENCRYPTION

Several basic elements make up the basis of a multitude of possible encryption

algorithms, either alone or in combination [BEK][BAL].  Although most of these elements

may be used to form the basis of an encryption method all by itself, the most secure methods

of encryption will use several of them.  For example, substitution and permutation are basic

elements of both the DES and MPJ encryption algorithms.  These algorithms, in turn, are

best used with some form of feedback.

A.  Substitution

A substitution cipher simply substitutes one symbol from the plain text alphabet

for another one from a cipher text alphabet.  The plain text alphabet can be a natural

language alphabet, ASCII, EBCDIC, Baudot, the set {0,1}, or any other finite set.  Cipher

text alphabets, likewise, may be any finite set.  To be able to easily apply computer methods

to the manipulation of these alphabets, it is preferable to use alphabets that are groups of

binary digits (bits).  This is not a severe limitation, since a correspondence can be set up

between any finite set and a set of binary numbers.

1.  Monoalphabetic

A monoalphabetic substitution cipher is one in which each letter of the plain

text alphabet is always substituted for by the same cipher text alphabet. The cipher text

alphabet need not be in any particular order.  A subset of the monoalphabetic substitution

cipher is the Caesar cipher.  This cipher replaces each letter with a letter that is n letters

later in the alphabet.  This cipher is so named because it was reportedly first used by Caesar.
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[KAH]  With only 26 possible keys, this is obviously not very secure.  In fact, any

substitution cipher that substitutes one letter for another is vulnerable to solution by

frequency analysis, and can be solved, given enough cipher text with the same key.  How

much cipher text is enough depends on the nature of the plain text, but for plain English,

as many characters as there are letters in the alphabet is sufficient for the probabilities of

occurrences of letters to betray enough letter identities to make solution probable.  While

ciphers of this type no longer have any value for serious cryptography, they do make fun

puzzles for elementary school children.  For example, the following cryptogram is

presented for your solution:

UIJT JT B DBFTBS TVCTUJUVUO DJQIFS/  XPVME ZPV USVTU VPVS

TFDSFST UP JU@

Substitution ciphers can be made more secure by operating on substitutions of

more than one letter at a time.  For example, the substitution could be made on digraphs

or trigraphs (groups of two or three letters).  A more practical example is the Data

Encryption Standard.  DES is actually a substitution cipher with an effective alphabet size

of 264, or about 1.84 x 1019, and the MPJ Encryption Algorithm is a substitution cipher

with an effective alphabet size of 2128 or about 3.4 x 1038.   Not only is it difficult to get

that large of a sample to analyze for statistics, but the memory required to store the

substitution table is impractical even for computer systems using large optical storage

disks.
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2.  Polyalphabetic

A polyalphabetic substitution cipher is one in which each letter of the plain text

alphabet may be replaced a letter from one of many cipher alphabets. The selection of

which alphabet to take the substitution from may be determined in many ways.  The most

usual method is by selecting the cipher alphabet by a combination of a message indicator

and the number of characters from the beginning of the message.  The classic example of

this type of cipher is the rotor-based machine.  The substitution occurs by physical wire

crossings within rotors.  After each character is enciphered, one or more rotors are rotated

by a ratchet mechanism.  The message indicator, which is part of the key, determines the

starting position of the rotors.  This effectively allows the use of more cipher alphabets

than there are letters in the message.  Because of this, the use of statistical analysis on any

one message to guess at the substitutions is useless.  There is, however a good way to attack

this kind of cipher when it is used heavily. This is by analyzing the statistics of the first

character in each message, then the second, etc.  This is called analyzing the messages ‘‘in

depth.’’

Although the rotor-based polyalphabetic ciphers used by Germany and Japan

in World War II contributed greatly to their losses because their messages were read

regularly by the allies, it is possible to create a more secure polyalphabetic substitution

with computer technology. The primary weakness of the mechanical rotor machines was

the infrequent changing of many of the parts of the key such as rotor wiring and ratchet

construction.  A more general method of using a different set of alphabets for each message

would be very secure.  Unfortunately, it would result in keys larger than the message.  Since
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the minimum key length for absolute, provable cryptographic security, as determined by

C. E. Shannon [SHA], is exactly the length of the message, this solution is not very efficient

with respect to key management.

B.  Permutation

Permutation is taking the same symbols and writing them in a different order to

confuse an interceptor.  There are many ways of doing this geometrically. For example,

words may be written vertically then transcribed horizontally, or they may be written on a

strip of paper wrapped along the length of a rod of a given diameter, then unwrapped for

delivery.  One possible permutation of binary digits is shown graphically in figure III.B.

In general, a permutation operation may be considered as an operation on a block

of symbols, where each symbol’s position is changed to another position within the block

according to some rule.  The blocks may overlap each other if the permutation is undone

from the end of the message to the beginning.

The rule(s) determining how the permutation is done may be fixed, or they may

depend in some way on a key.  Although historical permutation ciphers tended to be rather

simple, computer methods allow them to be potentially rather complex, especially if the

symbols that are scrambled are individual bits.

INITIAL BIT POSITIONS   (BEFORE PERMUTATION)

FINAL BIT POSITIONS (AFTER PERMUTATION)

Figure III.B  Permutation.

11



Permutation, when used in combination with substitution, is very useful in

further increasing the complexity of a cipher, since the two algorithms act in different ways

to baffle the interceptor.  This is significant, since it is not possible to actually increase the

security of a substitution cipher by simply repeating the same thing with a different key.

The result in such a case would be another substitution cipher with the same complexity.

C.  Noise Addition

Noise addition can either be a way of enhancing another encryption scheme, or

of hiding the very existence of a message.  See figure III.C for a block diagram of a noise

addition process.  For example, a grid can be set up on a piece of paper where only certain

positions are significant.  These positions are then concatenated together to reveal the secret

message.  The rest of the paper is then filled with something that uses those characters, but

contains something different, like a letter to someone’s mother.  The same thing can be

done electronically, by defining a block of bits with only part of the bits significant.  The

rest of the bits are then filled with truly random noise, like the output of a Geiger counter.

This method can be very effective, especially if the position of the information-bearing

bits vary from block to block in a pseudorandom manner, and if there is a relatively large

proportion of truly random noise.  The obvious disadvantage to this kind of scheme is that

it makes very poor use of communications channels and data storage facilities.

Combiner Splitter
Message

Noise
Message

Noise
Figure III.C.  Noise Addition
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One useful variation on the noise addition method is to multiplex several

encrypted streams of data (encrypted with another method) together with some

pseudorandom interleaving.  Since the other encrypted streams of data act like the random

noise added to any one stream of data, this is a good way to improve security when a large

volume of encrypted data must be sent through the same channel.

D.  Feedback & Chaining

A block cipher like DES or MPJ, when applied directly to an input file with a

highly repetitive structure (i. e., lots of spaces between columns) will also display some of

that structure.  Although it may not be possible to determine the exact contents of what has

been encrypted, it may be rather easy to determine something about the nature of what has

been encrypted.  To deny the interceptor even this information, and to further increase the

complexity of the encrypted information, feedback and chaining may be used.  Chaining

refers to making the results of the encryption of one block dependent on previous results.

This is usually done in one of two ways.  One is by adding the plain text from the last block

to the cipher text of this block, modulo two.  The other is by adding the cipher text from

the preceding block to the cipher text of the current block, modulo two.  These are referred

to as plain text feedback and cipher text feedback, respectively.

Figure III.D shows block diagrams of the basic modes that a block cipher can

be run in.  In this diagram, P refers to the plain text message, C the cipher text, and IV the

initialization vector.  The initialization vector is only used in the feedback modes to encrypt

the first block of data.  After the first block is encrypted, the feedback value is used instead.
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1.  Plain Text Feedback

Plain text feedback has the property that any errors in transmission get

propagated clear through the rest of the message.  This may be a desirable property if it is

necessary to detect any tampering with the message, but it makes it difficult to use real

(error-prone) channels.  If it is necessary to have the property of error propagation to detect

tampering and to use real channels, then the message should be transmitted using an error

detection and correction protocol of some sort.

Encrypt Decrypt

Encrypt Encrypt

Encrypt Encrypt

Encrypt Encrypt

Delay Delay

DelayDelay

P

Key Key

C
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Electronic Codebook
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IV

Key Key
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P

Delay Delay

Stream Cipher Mode

Figure III.D.  Block Cipher Modes.
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2.  Cipher Text Feedback

Cipher text feedback also causes some error propagation, but not clear through

to the end of a message.  An error in one block will cause an error in that block in the bit

positions where the error occurred and in all of the next block, but the receiving station

can recover all subsequent error-free blocks.  This method is a good compromise between

security and error recovery.  It is still desirable to wrap encrypted data in an error detection

and correction protocol to avoid having a one bit error wipe out many bits.

E.  Analog Encryption

There are several methods of analog encryption.  None of them are as secure as

digital methods can be.  Analog encryption is generally based on spectrum inversion,

spectrum scrambling, time slice scrambling, and (for video signals) suppression of

synchronization information.  These elements are also used in combination [LOD].  These

methods are commonly used by cable TV companies (and sometimes on satellite channels)

to ensure that people only get the programming that they have paid for.  Articles on how

to build devices to defeat some of these things appear periodically in electronic hobbyist

magazines.

The state of the art in current use for protection of satellite TV signals is the

General Instruments Video Cipher II.  This device used digital (DES) encryption of the

audio information and a partially analog encryption of the video signal.  This device is a

deterrent to those who receive satellite TV without paying a cable TV operator, but it has

been broken by a hacker who figured out that it was possible to modify the microcode in

the device so that a key purchased for one machine would work on all of them with modified
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code.  This is, of course, illegal, but it allows one person to pay for a service and many

people to use it for free [DOH].  The problem here is not one of the encryption algorithm,

but in the key management.

Figure III.E shows a general analog encryption scheme that rearranges both time

and frequency blocks of a signal according to some pattern determined by a key.
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IV.       FACTORS RELATED TO ENCRYPTION

A.  Change of Language

Although it is not really encryption, the use of a different language from what

the interceptor is likely to know does increase the difficulty of cryptanalysis.  For example,

I know that it would be far more difficult for me to solve even a simple Caesar substitution

cipher in Chinese than in English, Spanish, or German.  This principal was used effectively

by the United States against Japan in World War II by using the Navajo language for spoken

radio communications [KAH].  Since the Navajo language had no written form, and was

only spoken by a small group of Native Americans, there were no Japanese who knew the

language.  The Japanese never did figure that ‘‘code’’ out.  Thus, the Navajo ‘‘Code

Talkers’’ made a great contribution to their country.

Part of the reason for the success of the Navajo Code Talkers was that the

Japanese had no idea what was going on.  Since this success is now well known, it is

difficult to determine the potential success of a repeat of this kind of approach.  There are

still some languages that are spoken only by a very few people in the world, some of which

have no written form.  These could be used to increase the effective ‘‘key space.’’

Although a change of language was a great victory for the Navajo People and

the United States of America during World War II, it is difficult to adapt this success to

computerized communication methods.
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B.  Digitization

The very act of digitizing an audio or video signal provides some protection

from the casual eavesdropper.  Although this provides no protection against a determined

snooper, it is an appropriate level of additional security for protecting the privacy of things

like mobile telephone conversations.  Of course, once an analog signal is digitized, there

is a wide range of digital encryption methods available.  Of course, some methods would

be overkill, since the same communication would probably be transmitted in the clear over

wire and/or microwave channels as well as by radio between the car and the stationary

cellular transceiver.

Although there has been some ill-conceived efforts by the mobile telephone

industry to legislate privacy for such applications by saying that it is illegal to listen to

someone else’s phone calls around 800 MHz (where cellular phones usually operate), this

kind of thing is unenforceable. Worse yet, such legislation provides a false sense of security

in a world where scanners and other receivers that operate in that range are readily

available.

C.  Compression

Data compression itself tends to obscure things by taking, for example, and

ASCII text file in English and reducing it to a binary file that is not as easy to read.  There

is a more important effect of data compression, however. The removal of the natural

redundancy of the plain text data before encrypting it with some kind of encryption

algorithm makes it much more difficult to cryptanalyze the cipher text.  In the extreme
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case where all of the redundancy of a message is removed, all messages of a given length

would be meaningful, and it would be impossible for the cryptanalyst to determine which

one was intended.

D.  Multiplexing

Multiplexed signals are less readable to the casual observer, but standard

multiplexing offers no real increase in cryptographic strength.  It can, however, increase

the strength of multiple streams of encrypted data when the multiplexing is done with a

pseudorandom interleave (as discussed earlier under noise addition).   This makes the

multiplexing and demultiplexing processes more complex with respect to synchronization

and timing, and is likely to introduce more delay into the system than more straight forward

multiplexing arrangements.
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V.   COMPARISON OF SELECTED ALGORITHMS

A.  One-Time Key Tape

The one-time key tape, also called the one-time pad, has a tremendous

advantage.  It is the only commonly used encryption method that is provably secure.

Proving the security of most other systems generally reduces to an impossible negative

proof — an attempt to prove the lack of a method to defeat it.

The way the one-time key tape works is to add each character of the message

to a character of the key modulo the alphabet size.  When working with any binary stream

of data, this is easy to implement by exclusive-oring the input stream with the key stream.

At the receiving end, the same thing is done to decrypt the data.  Since P + K + K = P

(modulo 2), the original stream is recovered.

As implied by the name, it is important that each key be used only once.  If it

were used more than once, then the system would be vulnerable to attack with the known

cipher text and corresponding plain text attack.  The key is obtained from the boolean

identity:  K = (P + K) + P, where K is the key, P is the plain text, P + K is the cipher text,

and all additions are modulo the alphabet size (usually 2).  The key thus recovered would

then be used to decipher the next message that used it.

According to C. E. Shannon [SHA], for a cipher to be provably secure, the

number of keys must be as great as the number of potential messages.  The number of keys

he refers to, of course, is the number of keys that yields a distinctly different transformation

of the message text into cipher text.
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This method of encryption is provably secure, since an exhaustive search of the

keys applied to any cipher text of a given length will yield all possible plain text messages

of the same length.  Since there are many messages of the same length that make sense,

many of which have totally contradictory or unrelated meanings, the cryptanalyst has no

way of knowing which one was intended unless he has the key.

Naturally, any method of encryption this secure has a price.  The price is the

sheer volume of keying material that must be kept secure and managed.  For any

communication network or data storage system that handles large amounts of data, key

management becomes a nightmare with this system.  Keys must be generated randomly

— not pseudorandomly — to be absolutely secure.  This means that a random process

should be measured in generation of the keys.

A block diagram of the one-time key tape is shown in figure V.A.

B.  Linear Shift Register Feedback

Linear shift registers with selected feedback taps are commonly used to generate

pseudorandom sequences for such things as spread spectrum communications.  They could

be (and are, in some cases) applied to cryptography by exclusive-oring the pseudorandom

stream with the plain text stream.

Random key (same
length as message) Same key

Message

Message

Figure V.A.  One-time key tape (AKA One-time pad)
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The main weakness to this approach is the cipher text with corresponding plain

text attack.  If the cryptanalyst obtains the plain text that came from a certain cipher text,

then he can recreate a portion of the pseudorandom stream by exclusive-oring the two

together.  The linear shift register feedback function can then be expressed as a system of

linear boolean equations that will solve the portion of the cycle that was received.  A

solution of this system of equations is possible with only enough bits to be a few times as

long as the shift register at the most [DEN].  Since this amount of plain text required to

break the cipher is so much less than the length of the pseudorandom sequence, it is likely

that this solution can then be applied to additional cipher text to recover it, too.

C.  Exponential Encryption

The classic algorithm of this type is the RSA algorithm, which is named after

the initials of its creators (R. L. Rivest, A. Shamir, and L. Aldeman).  The security of this

algorithm rests on the fact that even with supercomputers, it is very difficult to factor the

product of two very large prime numbers.  The RSA algorithm has a unique property in

that the key has two parts, one of which may be made public.  This makes this algorithm

very well suited to the use of digital signatures.

The RSA algorithm defines the relationships between the plain text message,

the cipher text, and the elements of the key as follows [JAC]:

C = Pe mod m

P = Cd mod m
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m = pq

where C = Cipher text, P = Plain text, e = encryption key, d = private decryption key, m =

public modulus, and p and q are randomly chosen large (> 150 digits each) prime numbers.

The receiver chooses a private key d and calculates a public key e.  d must be relatively

prime to (p – 1) and (q – 1).  The algorithm works because ed = 1 mod the least common

multiple of (p – 1)(q – 1).  The algorithm is only secure if very large prime numbers are

used.  A number of 100 digits is too small — this size of number can be factored now with

a multiprocessor technique developed by Arjen K. Lenstra of the University of Chicago

and Mark Manasse of Digital Equipment Corporation [COS].

The key generation for RSA is a bit nasty, but is reasonable using Rabin’s test

for primality:  Let n = 2rd+1, where d is odd. Choose a at random from 1 < a < n – 1.

Accept n as prime if either ad = 1 mod n or a2jd = -1 mod n for some j such that 0 ≤ j < r,

otherwise reject it.

RSA is excellent for public key and authentication use, but it does have certain

disadvantages for general encryption use.  The processing time required for key generation

and for the encryption/decryption process makes it a poor choice for use with high data

rates, although there are some reasonably efficient ways to do the exponentiation [CHI].

The complexity of the algorithm makes it more difficult to implement than many others

[VAN].  The worst problem, though is the way that the complexity of solving the algorithm

could be reduced by several orders of magnitude by mathematical research.  For example,

J. Sattler and C. P. Schnorr recently published some algorithms that would appear to reduce
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the complexity of solving an RSA key by a factor of about 104 [SAT].  Granted that we

are talking about taking 9 x 108 years instead of 1.5 x 1013 years, but it is the potential for

other discoveries that may drastically reduce this time even further that is the real threat.

D.  Knapsack

A knapsack or trapdoor algorithm is one that is relatively easy to perform, but

which is very difficult to invert.  The RSA algorithm is one such algorithm.  Another one,

proposed by Ralph C. Merkle, uses the following vector operation:  given an integer s and

an integer vector a = a1, a2, ..., an find a vector k = x1, x2, ..., xn where xi is in {0,1} such

that s = x * a. (* denotes dot product.)  [MER]  This algorithm is referred to in another

paper as having been broken [VAN].  Another algorithm using matrix operations is

suggested by H. Retkin [RET].  This algorithm may be good, but it is not obvious to me

that no one will come up with a good solution to breaking it, too.  Therefore, I prefer to

use encryption algorithms that have simple brute force solutions that are well understood,

but just take too long to perform to be of concern.

E.  Rotor Machines

Rotor machines were once the state of the art in cryptography.  They are a way

to form a polyalphabetic solution automatically.  An excellent history of these machines

is contained in [KAH], [DEA], and [KOZ].  Although they are obsolete now due to the

superiority of many computer algorithms, they played a major role in the history of

cryptography.
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There were many di fferent

variations on the rotor machine, but the main

principle of each of them was that the input,

which is normally indicated by one of 27 (or

whatever the alphabet size in use is) wires is

connected to a voltage level by a keyboard.

This wire is then connected via rotary

contacts to a rotor that physically permutes

the position of the wire.  This causes a simple

substitution for each character, or a poly

alphabetic substitution. The output is taken

from rotary contacts on the other side of the rotor. Several of these rotors are placed in

series.  After each character is encrypted, one or more of the rotors is moved to a new

position by a ratchet mechanism.  The net effect is a different simple substitution for each

letter in the message.  A typical

rotor-based rotor machine is

shown in figure V.A.1.  Typical

rotors with variable wiring

between contacts are shown in

figure V.E.2.  Common additions

to this scheme are a plugboard

style permutation performed

Figure V.A.1  Typex Rotor Machine

Figure V.E.2.  Wired Rotors
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before or after the rotors and the addition of a reflecting rotor to run the signal back through

the rotors in the opposite direction, using each rotor twice.

The key used is a combination of several things:  (1) the permutation performed

by each rotor (changed by rewiring it), (2) the order in which the rotors were assembled,

(3) the starting position of the rotors, (4) the plugboard connections, (5) the number of

rotors used, and (6) the ratchet arrangement.  Taken all together, these form a large key

space.  If the entire key space is varied simultaneously and for every message, then this

polyalphabetic substitution is very secure.  Due to the construction of these machines, some

of the variables were not as easy to change as others. Therefore in practical use, the variables

were not changed all at once.  For example, the number of rotors and the ratchet

arrangement would probably be fixed for the life of the machine.  Therefore, if this portion

of the key is solved for once, that is enough until a new kind of machine replaces it, perhaps

years later.  The rotor wiring is tedious to change, and therefore unlikely to be changed

very often.  The order of the rotors might be changed periodically, but during heavy use,

the only thing that was changed for each message is usually the starting position of the

rotors.

Using an alphabet size of 26 and five rotors, varying only the starting position

of the rotors provides a key space of less than 12 million, which is within the range of

possibility of solution by mechanical computer, and a quick task for one of today’s PCs.

With many messages encrypted with the same rotors, the rotor wiring can be solved by

frequency analysis ‘‘in depth.’’  In other words, the permutation applied to the first letter

of each message can be solved by determining the frequency of occurrence of each code
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letter and comparing that with the language of the source language.  This can be done for

each position in the message.  From these substitutions, the rotor wiring and plugboard

connections may be deduced.  This is a more lengthy process than solving for the rotor

starting position, but once done the solution is likely to be good for a while.  Using this

kind of approach, isolating the parts of the key, the Allies read many German and Japanese

messages during World War II.

Rotor machines can be simulated in a computer program with more flexibility

than in mechanical hardware, with many improvements.  There are, however, better

methods to use in computer algorithms that were not easy to use in mechanical devices.

Therefore, rotor machines are interesting to study for historical value, but they are obsolete

at a time when computers are becoming almost as common as televisions.

F.  Codes

Codes, as opposed to ciphers, operate on linguistic units like words, phrases,

and sentences, rather than directly on the units of the alphabet.  Codes have the advantage

that they generally compress the message.  For example, the codeword ‘‘APPLE’’ might

mean ‘‘The supplies will be shipped on Monday via private courier’’ and ‘‘GRAPE’’ might

mean ‘‘The bid is too high.  Reduce it by 10%.’’  If there are only a few different messages

that might be encoded, a substantial savings in space can be realized.

Codes are useful for compression of information, even when no encryption is

intended.  For example, the Uniform Commercial Code, used for telegraphy saves on tolls,

even though it is published and gives no real security.  Another example is the use of Q

signals on amateur radio, where encryption is illegal but brevity is important, especially
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when using a slower mode of communication like Morse Code.  QST means ‘‘The

following is a message of interest to all Amateurs’’ and QSL means ‘‘My location is

_____.’’

When used to hide the meaning of the message, the code must be changed often.

This is much more difficult to do than to change the key to an encryption algorithm.

Therefore, this technique has limited value except for some diplomatic and military codes.

For commercial applications where brevity and security are both required, it is easier to

first encode the plain text with a fixed code to reduce its size, then to encrypt the encoded

text with an encryption algorithm whose key can be easily changed.  This technique is

more secure than the use of the encryption algorithm alone, even if the code used is widely

known.  See chapter VIII for more on the effects of data compression when used with

encryption.

G.  Galois Field and Hill Cryptosystems

A Galois Field cryptosystem is one in which the letters of the encryption alphabet

are assigned arbitrarily to the polynomials of degree n.  These polynomials are then

operated on in blocks of m letters by matrix multiplication with a matrix that represents

monic irreducible polynomials of order n+1.  All operations are done modulo p.  To decrypt

the data, the ciphertext is multiplied in the same manner by the inverse of the encryption

matrix (obtained using the same modulo arithmetic).  The resulting numbers are then

substituted back for the letters they represent.
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The Hill cryptosystem is similar, except that n is fixed at one, and that p need

not be absolutely prime as long as several integers less than p are relatively prime to it.

For more details on how these cryptosystems work, see the articles by Hill, Cooper, and

Patti [HIL] [HLL] [COO] [PAT].

Both of these systems are based on modular linear algebra.  Therefore, they are

subject to solution of the key in use by linear algebra if enough cipher text and

corresponding plain text is available.  If the permutation of the encryption alphabet in use

is known, then the amount of corresponding plain and cipher text needed for a solution is

not much greater than the key length.  If the permutation of the encryption alphabet in use

is not known then there must be a sufficient quantity to also perform statistical analysis

attacks on the alphabet in use.  Therefore, I do not recommend the use of these systems

for serious encryption because of these vulnerabilities.  Not only are they less secure than

their key length (the combined length of the coefficients of their matrices is less than the

effective key length of log2(m2m∑m
i=1pi)) would indicate, they are computationally less

efficient than DES and MPJ.  Key generation for these systems becomes increasingly

complex as the size of the key grows, too, because the probability of coming up with a

valid set of monic irreducible polynomials that form an invertible matrix decreases rapidly

with matrix size.

These cryptosystems, do, however, provide interesting mathematical

illustrations on what can be done with Galois Fields.  They also provide adequate security

for cases where the information being secured is not of great commercial value, and is

therefore unlikely to be cryptanalyzed.
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H.  DES

The National Bureau of Standards (now known as NITS) Data Encryption

Standard (DES) was published in the Federal Information Processing Standards

Publication Number 46, dated January 15, 1977 (FIPS PUB 46) [DES].  For details, please

refer to that publication.  A summary of the algorithm follows.

Encryption consists of an initial permutation, sixteen rounds of encryption, then

an inverse of the initial permutation.  See figure V.H.1.  Each of the sixteen rounds of

encryption consist of taking the right half of the input block (32 of the 64 bits) and running

it through a nonlinear function of the 32 bits and an internal key, then adding this result to

the left half of the input modulo two.  This 32 bit answer becomes the next round’s right

half block.  The next round’s left half

becomes the right half block without

modification.  The nonlinear function

used consists of a bit selection E that

selects 48 bits from the input of 32

(several of the bits are repeated).  These

48 bits are added modulo 2 to the round

key of 48 bits.  See figure V.H.2.  The

result of that operation are then fed six

bits each into eight substitution boxes.

Each of the eight substitution boxes are

different, but the same set of eight boxes
Figure V.H.1.  DES Enciphering
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are used for each round.  Each

substitution box gives an output of 4 bits.

The output of these boxes are fed into a

permutation P that rearranges the output

in a fixed manner.

The sixteen internal keys are

generated from the 56 bit input key by

feeding the input key into a fixed

permutation that rearranges the order of

the key bits.  The key is then split into left and right halves called C and D.  Each half is

shifted left one or two times (according to a fixed table) before generating each internal

key.  Each of the sixteen internal keys is generated by taking the two halves of the key as

shifted and permuting them in a fixed manner.  See figure V.H.3.

The key and the resulting internal keys are the only things that vary in this

algorithm.  The initial and final permutations and the contents of each of the substitution

boxes are constant.  The two permutations used in generating the internal keys are constant.

The bit selection and permutation used within the nonlinear function are constant.

The strengths of the DES is that its cryptographic strength depends only on the

key, that the algorithm is easy to implement in a single IC, that it has been well tested an

no one has publicly announced a solution, that hardware and software that uses it is readily

available, and that the algorithm places very few restrictions on key generation so that

random numbers may be generated by the users for use as keys.

Figure V.H.2.  DES Nonlinear Function
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The weaknesses of the DES are that the key is too short for security in the face

of anticipated increases of computing power, that it is old enough that it is likely that

someone has broken it (found a short-cut solution), that hardware implementations of the

DES are too slow for some applications, and that it limits itself to be simpler than is really

necessary with current

technology.

Figure V.H.3.  DES Internal Key Generation
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VI.  DESIGN CONSIDERATIONS FOR MPJ

The following paragraphs describe the design considerations that I used in

creating the MPJ Encryption Algorithm, and the reasons for each.

A.  Strength Based on Key

The strength of the system must rely on the security of the key only.  It cannot

depend on the algorithm being kept secret, because the algorithm will be published.  Even

if the algorithm were not published, it would probably be reverse engineered from software

implementations of the algorithm.  The algorithm must be constructed in such a way that

there is no computationally feasible way to derive the key from samples of corresponding

plain text and cipher text.

B.  Usability of Random Keys

The key selection should be as easy as the random selection of a number in a

given range.  Selecting a very secure key should be no more difficult than flipping a coin

once for each bit of the key, or generating keys using a pseudorandom sequence combined

with random events such as timing of keystrokes on a computer.  A one bit change in the

key should provide a drastically different transformation, so that a potential cryptanalyst

has no idea when a key that he guesses might be ‘‘close’’ to the right one. 
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C.  Key Length & Block Size

The key length should be significantly longer than the DES 56 bit size.  A key

size of 128 bits (sixteen 8-bit bytes) was chosen as being very manageable, yet highly

secure even when attacked by multiple array supercomputers.  The block size was also

chosen as 128 bits (twice the size of DES) to provide a significant increase in complexity

of the encryption.

D.  Effort Required to Break

The effort required to break the algorithm by any method should be so great as

to make such a task unfeasible even if significant advances are made in computer

technology.

This requirement is intimately linked to the choice for key size and block size.

For example, if one thousand keys could be tried every nanosecond (1012 attempts per

second), an exhaustive key search that resulted in success after only testing one millionth

of the possible keys (extremely good luck) would take 2128/((1012)(106)) = 3.4 x 1020

seconds = 1 x 1013 years.  If someone figured out a computational method or weakness in

the algorithm that reduced the complexity by a factor of a million, and that someone also

figured out how to compute the solution a thousand times faster, and they still believed in

one in a million chances at good luck, they could possibly come up with a solution in only

10,000 years. By way of contrast, testing keys at the rate of 1012 per second for DES with

its 56 bit key, all of the keys can be tested in 7.2 x 104 seconds, or about 20 hours.  While

trying a trillion keys a second is not realistic with current general purpose computers,
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current technology could be applied to dedicated, highly parallel encryption/decryption

engines that could approach that speed — at a cost that would be prohibitive for all but

large governments at today’s prices.

Other than time, the other main measure of complexity of an algorithm is the

storage capacity required to implement a lookup table attack.  Suppose a lookup table were

to be constructed that contained the encrypted version of just one block of cipher text

corresponding to a very common block of plain text (such as 16 ASCII spaces) for every

key possible.  For the MPJ algorithm, this would take 2128 x 128 = 4.356 x 1040 bits.  If

this memory were constructed with some kind of device that could store one bit per atom

of silicon, this would take 4.356 x 1040 bits x 28.086 amu/atom x 1.660531 x 10-24

grams/amu x 10-6 metric tons/gram = 2.03 x 1012 metric tons of silicon.  That is about one

thousandth of the mass of Deimos, the smaller of Mars’ two moons [CRC].  For DES, the

same table would only require about 215 micrograms of silicon.  Nobody has come up

with memory that dense, and fundamental physical limits make such a task difficult, indeed.

It is not difficult to conceive of some breakthroughs in optical storage technology coming

close, say using a thousand molecules of something per bit. Under those circumstances,

DES would be vulnerable to such an attack, where MPJ would still be safe.

E.  Computational Efficiency

The MPJ encryption algorithm must be computationally efficient enough to be

implemented in software on a standard IBM PC or compatible (or on an Apple computer

of comparable power), and fast enough to handle at least 10 megabits per second when
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implemented in dedicated hardware.  Note that this is less restrictive with respect to the

hardware for DES, which was required to be simple enough to implement on a single chip

using 1970s technology.

F.  Communication Channel Efficiency

The MPJ encryption algorithm must not significantly increase the size of the

plain text when encrypting it.  This precludes the use of noise addition as a technique to

be used.

G.  No Back Doors or Spare Keys

While it may be impossible to guarantee that no ‘‘back doors’’ or  ways to

decipher a message without the key exist, the algorithm should be a sufficiently complex

combination of simple, well-understood operations  that no help is offered to the

cryptanalyst from the structure of  the algorithm. Spare keys (the situation where more

than one unique  key will decipher a message) are avoided by making the number of keys

possible much less than the number of possible transformations that can be done  on a set

of blocks.  This is true for MPJ because 2128 << 2128!.
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VII.      MPJ ENCRYPTION ALGORITHM

A.  Description

The MPJ Encryption Algorithm can be looked at from the outside like a rather

large electronic codebook that operates on 128 bit blocks.  The algorithm may be used in

several modes.  It can be used directly in electronic codebook mode, in block chaining

with ciphertext feedback mode, in block chaining with plain text feedback mode, and in

stream cipher generation mode.

Given a 128 bit key, instructions to encrypt or decrypt, and a 128 bit input block,

a unique 128 bit output block comes out. Encryption and decryption are inverse operations

that can be done in either order.  For example, if P is the plain text block, C is the cipher

text block, EK1 is encryption with key 1, and DK1 is decryption with key 1, then C = EK1(P);

P = DK1(P).  A different cipher text results if the plain text is decrypted first, but

DK1(EK1(P)) = P = EK1(DK1(P)).  Multiple encryption can be done with several keys, as

in these examples with three:

C = EK1(EK2(EK3(P))); P = DK1(DK2(DK3(C))) or a different method:

C1 = EK1(DK2(EK3(P))); P = DK1(EK2(DK3(C)))

1.  Overall Structure of MPJ

Before encryption or decryption occurs, the substitution boxes are filled based

on the input key.

To encrypt a 128 bit input block, it is run sequentially through ten rounds of

substitution.  Each round of substitution operates on the 16 eight-bit bytes that make up

the input block individually.  In between each round of substitution is a round of
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permutation (wire crossings), for a total of 9 rounds of permutation.  See figure VII.A.1.

The permutation operation is identical each time.  Each operation (substitution and

permutation) has an inverse operation.  Decryption is done by running the inverse operation

of each of the above steps in the opposite order.

After one round of permutation, each bit in the output block depends on every

bit in the byte that it is in and on eight bits of the key.  After a round of permutation and

the second round of substitution, each bit in the block depends on eight bytes of the input

block and on eight bytes in the key.  After the third round of substitution, each bit in the

block is functionally dependent on 15 of the input bytes and on 15 bytes of the key.  After

the fourth round of substitution, each bit in the block is functionally dependent on every

bit of the input block and on each bit of the key.  After the tenth round of substitution the

functional dependence on every bit of the key and the input block is so complex that it

would be infeasable to determine the key used, even if the cryptanalyst has known

corresponding plain and cipher text and knows the algorithm used.  Because the

substitution boxes are totally nonlinear functions, the problem of finding each of the 40,960

internal key bits is a tough one, indeed.  It would be easier to find the original key of only

128 bits by brute force — something that is difficult, indeed.

2.  Substitution Boxes

The substitution boxes are designed to be big enough to provide a large number

of possible arrangements, but small enough to still fit comfortably within the memory of

an MS-DOS computer.  Each substitution box is therefore a collection of 16 substitution
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boxes that operate on only 8 bits at a time, with a

total of 256 entries.  The substitution boxes may be

an array or look-up table in a computer, or they may

be implemented in hardware using RAM.

The substitution boxes are filled during

the internal key generation process with a

permutation of numbers that depends on the main

key in a different way for each substitution box.

3.  Wire Crossings

The wire crossings serve to extend the

functional dependence of the output block on the

input block across the internal byte boundaries.

This is done by making each byte of the output of

the permutation to contain one bit from each of

eight different bytes.  The selection of bits was chosen to make a computer implementation

fairly efficient.  A pure hardware implementation of this operation is, of course, much

faster, since it involves only the propagation delay of the signal from one end of a short

wire to the other.  The input block bit positions are numbered from left to right (MSB to

LSB) as 127 down to 0, then the new positions those bits occupy after the wire crossing

are (MSB to LSB):

Byte Substitutions

Byte Substitutions

Byte Substitutions

Wire Crossings

Alternating substitution (total of
10) & wire crossings (total of 9)

Figure VII.A.1.  Overall
Structure of MPJ
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55, 46, 37, 28, 19, 10, 1, 120, 111, 102, 93, 84, 75, 66, 57, 48, 39, 30, 21, 12, 3,

122, 113,  104, 95, 86, 77, 68, 59, 50, 41, 32, 23, 14, 5, 124, 115, 106, 97,  88, 79, 70, 61,

52, 43, 34, 25, 16, 7, 126, 117, 108, 99, 90, 81, 72, 63, 54, 45, 36, 27, 18, 9, 0

The permutation is perhaps easier to understand graphically.  In figure VII.A.3,

the source bytes for the bits in 5 of the destination bytes are shown.  The least significant

byte of the output gets its least significant bit from the least significant bit of the same byte

of the input.  The next most significant bit comes from the corresponding bit of the next

input byte to the left, and so on, until all eight bits are filled.  The least significant byte is

considered to be to the left of the most significant byte.

4.  Key Generation

Internal key generation in the MPJ encryption algorithm consists of filling all

of the substitution boxes (arrays in software or RAM in hardware).  There are 16

substitution boxes used for each of 10 rounds.  Each substitution box contains 256 entries

of 8 bits each.  Therefore, the actual internal keys have a combined length of 16 x 10 x 256

x 8 = 327,680 bits.  These are obtained by manipulation of the 128 input key bits.  Note

that trying to attack the MPJ encryption algorithm by brute force trial and error using

internal keys instead of using the 128 input key bits is ridiculous.  The calculations given

above indicate how difficult even a 128 bit random key is to solve by brute force.  The

only way that an attack on internal keys is useful is if there are parts of the internal keys

that can be solved for separately, without having to solve for as many as 128 bits at once.
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Attacks against the internal key structure are made computationally intractable

in three ways.  First, the smallest chunk of the internal key that could be meaningfully

solved for is the contents of

one of the substitution

boxes.  Each of these

contain 256 bytes, or 16

times the length of the

input key. Remember that

the addition of each bit

doubles the complexity of the solution, so this is not attractive compared to solving for the

input key.  The second impediment to this attack is to make the relationship between the

contents of the substitution boxes and the input key quite nonlinear.  The way this is done

is by using a combination of rotating bit selection and the use of the last substitution box

filled to compute the contents of the next one.  The third line of defense against the solution

of internal keys is the use of ten nonlinear rounds of encryption to make any attempt at

constructing a system of linear equations to solve for the internal key given known plain

text and corresponding cipher text infeasable.  Note that each round of encryption in MPJ

causes the whole 128 bit block to be changed, where each of the rounds in DES only

modifies half of its 64 bit block.  Therefore the internal structure of MPJ is very difficult

to solve for, with each bit of the output having a nonlinear functional dependence on every

bit of the input and on the contents of 1 + 8 + 15 + (7 x 16) = 136 of the substitution boxes,

Figure VII.A.3.  Wire Crossings
Source bytes for 5 destination bytes are shown.
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containing a total of 34,816 bits.  If the substitution boxes were linear, this solution would

be possible, but there is no method I know of to solve such a system of nonlinear equations,

either here or the simpler case of the DES internal structure.

To find the inverse of the substitution box functions, separate inverse

substitution boxes are formed that place each address of a substitution box at the address

of the data contained in the substitution box.  For example, if the contents of the first

substitution box in the first round of encryption for the input value of 1 is 219, then the

contents of the first inverse substitution box in the last round of decryption for the input

of 219 will be 1.  In equations, SI[i, j, S[i, j, k]] = k for all i, j, k, where the first index of

the array is the round of encryption, numbered from 0 to 9, or the round of decryption,

numbered from 9 to 0 (defined differently for programming convenience); the second index

is the position of the 8 bits that the substitution applies to in the input block, numbered

from 0 to 15, left to right; and the third index is the value of the 8 bits input to the block.

The actual algorithm for substitution box filling consists of three main parts.

The first one is a nested loop to fill one substitution box, permute the key with the same

permutation used for the encryption operation, then to run each byte of the key through

the substitution box that was just filled. This is done for each round of encryption, from 0

to 9, with each substitution box used in one round of encryption, from left to right, done

within each of these rounds.  In other words, the index of the three dimensional array that

selects the position of the substitution box within each array varies faster than the index

that selects the number of the round of encryption that the box uses.
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The second algorithm is the one that fills each substitution box based on the

contents of the input key, as modified by the previous steps.  This algorithm uses bit

selection and rotation to determine where each value of the output of the substitution box

goes.  To be an invertable function, each of the possible output values from 0 to 255 must

appear exactly once somewhere within the array with 256 possible slots, numbered from

0 to 255.  The first number placed in the array is 255, and there are 256 possible places to

put it.  The second one is 254, with 255 places to put it.  This is continued until the last

value, 0 is placed in the one remaining slot.  For the first half of the values, the formula

pos = (n * m) div 255 is used to determine which of the unfilled slots (counting in index

order from 0 to n) is to be used to contain n.  The variable pos is the position (counting

only unfilled slots), * denotes multiplication, and div is the integer division operator

(remainders are ignored).  The variable m is determined for the first value of n (255) by

selecting one bit from each byte of the key, starting with the least significant bit from the

least significant byte of the key.  The next bit (place value of 2) is selected from the next

most significant bit of the key, and so on until m has eight bits.  For the next value of n

(254), the same thing is done, except that the bit selected is one bit position to the left of

the one selected last time.  The place value of the bit selected is the same in m as it is in

the byte it came from.  The bit to the left of the MSB in a byte is the LSB of the byte to

the left of it.  The byte to the left of the most significant byte is the least significant byte.

For the values of n from 127 to 0, then the same thing is done, except that only seven bits
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are selected for m, and the position is determined from pos = (n * m) div 127. For a more

concise explanation of this process, see the commented pascal procedure makesbox in the

program in appendix A.

The third algorithm used in internal key generation is the generation of inverse

substitution boxes.  This is done with a simple nested loop that fills the inverse substitution

boxes according to the formula si[i, j, s[i, j, k]] = k for i from 0 to 9, j from 0 to 15, and k

from 0 to 255.  The array si is the collection of inverse substitution boxes, and the array s

is the collection of substitution boxes filled by the above two algorithms.  Filling of inverse

substitution boxes is only needed for decryption mode.

B.  Implementation in Pascal

Pascal source code for a program to implement the MPJ Encryption Algorithm

is given in Appendix A.

1.  Exceptions from Standard Pascal

This program was written for MS-DOS computers and compiled using Borland

Turbo Pascal 5.0.  To adapt this program for use on another system, note that the following

features of Turbo Pascal that do not conform to the ANSI/IEEE770X3.97-1983 Standard

Pascal were used in this program:

(i)  The assign procedure is used to associate an operating system file name with

a Pascal file name.

(ii)  The nonstandard file handling procedures blockread, blockwrite, close, and

seek, were used.  The nonstandard function filepos was used.
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(iii)  The type longint (a 32 bit integer) was used for input handling to allow

range checking without invoking a system error for a number that was only slightly out of

range.  A 16 bit integer could be used instead.

(iv)  A generic file type was used, which is not defined in ANSI Pascal.

(v)  The nonstandard operators shl and xor were used.  The shl could be replaced

with integer division by 2 (div 2), and the xor could be replaced by expressions of the form

((A and (not B)) or ((not A) and B)).

(vi)  Logical operators (and, or, not, xor) were used with integers to perform

bit-wise operations.

(vii)  The + operator was used to concatenate strings.

(viii)  The uses clause links in separately compiled units.

(ix)  The include comment {$I filename} includes additional source code to be

compiled with the current file.

(v)  Additional nonstandard features were used in writing startup and the file

handling functions that are unique to MS-DOS.  These functions would best be rewritten

for a different target system.

2.  Main Program

The main program calls startup to initialize variables, get the key from the user,

and determine which files are to be encrypted or decrypted. It then calls makesbox to

generate the internal keys (fill the substitution boxes). If the decryption mode is to be used,

it calls makesi to fill the inverse substitution boxes.  It then does the actual encryption or

decryption.
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The main program allows for the encryption of multiple files (specified using

MS-DOS wildcards), and passes these files to the encryption routine one block at a time.

To provide additional security, files are encrypted in place, with each block of output

overwriting the corresponding input block in the same place on the disk.  If it is desired to

keep a copy of both encrypted and plain text versions of the file, the input file should be

copied before running this program.

Because this program uses block chaining with ciphertext feedback, only the

encryption mode of the MPJ algorithm is used, the source of the feedback (input or output)

being determined by the decryption boolean variable.  This mode is used because (1) it

obscures repetitive patterns in the source file that the electronic codebook mode might not

hide, (2) it accommodates files of any number of bytes (including a short block at the end)

with no complications and results in an output file that is the same length as the input file,

and (3) it is slightly faster in operation because the procedure makesi does not have to be

called.  This mode does require an initialization vector, but since the initialization vector

is encrypted before use, a constant initialization vector may be used.

To use the electronic codebook mode, delete the for statement following the

calls to encrypt, replace one call to encrypt with a call to decrypt, and remove the comment

delimiters from around the call to makesi.

3.  Procedures Encrypt & Decrypt

These procedures directly reflect the overall structure of MPJ.  They are simply

calls to the routines that perform the substitutions and permutations, calling them in the

proper order and passing a parameter to the substitution routines that select the right set of
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substitution (or inverse substitution) boxes for the operation being done.  The procedure

encrypt makes 10 calls to substitute, with 9 calls to permute (one call to permute between

each pair of calls to substitute.  The procedure decrypt makes 10 calls to isubst, with 9 calls

to ipermute, done in the inverse order of encryption.

4.  Procedures Permute & Ipermute

Permute just scrambles the order of the bits in the 128 bit block in such a way

as to maximize the dependence of each byte on every other byte of the input.  Each byte

is formed by selecting the least significant bit from the least significant bit of the

corresponding input byte, then the next most significant bit from the next byte to the left,

and so on.  The least significant byte is considered to be to the left of the most significant

byte. Ipermute is just the inverse of this permutation, with bytes being selected to the right

instead of the left.

5.  Procedures Substitute & Isubst

These procedures are simple array lookups in which each byte of the input block

is used as the third index of the array s for the procedure substitute or si for the procedure

isubst.  The output is the contents of the array.  The first index is the round of encryption

or decryption (counting backwards if it is decryption), and the second index of the array

is the byte position (0 to 15) within the input and output blocks.
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C.  Implementation in Hardware

For use with high data rates (greater than 10 Megabits per second), it is desirable

to implement the MPJ algorithm directly in hardware. This also provides the advantage of

greater security against tampering than a program on a general purpose computer might

be subject to.

The hardware implementation consists of six basic elements:  (1) Key

generation, (2) serial to parallel conversion, (3) substitution, (4) wire crossings, (5) parallel

to serial conversion, and (6) timing control.  The key generation is done by a program

running in a microprocessor.  This program takes the key as input and fills the substitution

boxes, which are simply static RAM chips. Serial to parallel conversion and parallel to

serial conversion is done with shift registers.  The wire crossings are done with physical

wire crossings (or printed circuit board trace crossings) — a technique that is hard to beat

for speed.  Timing control is done with a sequential circuit that is synchronized to the

incoming data stream.

The output data stream will, of necessity, be delayed by at least the block size

of 128 bits, and some kind of protocol must be used to synchronize the blocks at the sending

and receiving ends.

The figure VII.C shows a block diagram of a hardware implementation of the

MPJ Encryption Algorithm.  There are, of course, many variations possible.  For example,

block chaining could be used with hardware exclusive-or gates to do the modulo 2 addition

and flip-flops for unit delays.
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D.  Strengths & Weaknesses

The main strengths of the MPJ encryption algorithm are:

• It is much more secure than DES.

• When used in conjunction with data compression, MPJ is probably more secure

than many of the best military and diplomatic codes & ciphers.

• It is easy to generate a key for MPJ.

• It is capable of high data rates when implemented in hardware.

• It will run on a personal computer.

• It takes more time to generate internal keys from an external key than to actually

encrypt or decrypt data, making exhaustive key search attack more difficult.

• The algorithm is published and may be freely used for any legal purpose.

• There has not been a lot of time for anyone to search for a short-cut solution to

MPJ, nor the volume of sensitive material to motivate such a search as DES.

The main weaknesses of the MPJ encryption algorithm are:

• The key and block sizes are fixed (optimized for the memory and processing power

of the IBM PC), so it doesn’t take very good advantage of more powerful computers

other than running faster.

• The software implementation isn’t very fast.

• There is no way to prove that there is no short-cut solution to MPJ (or DES, or

almost any encryption algorithm except for the one-time key tape).
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VIII.     DATA COMPRESSION

A.  Purpose

Data compression has two obvious purposes:  to save on communication

channel capacity required to send a message and to save on media capacity required to

store a message.  The third purpose for data compression, pointed out by C. E. Shannon,

is to make decryption of a message more difficult [SHA].  In reading through the history

of cryptanalysis, it became very obvious to me that the one thing that all cryptanalysis

User
Interface Computer

Program
in ROM,
RAM

Input Output

I/O Buffer Wire Crossings RAM

Figure VII.C.  Hardware Implementation of MPJ
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relies on the most is the presence of a great deal of redundancy present in natural languages.

The more a cryptanalyst knows about the expected nature of a message, the more he can

use this redundancy to his advantage.  It is this redundancy that enables the cryptanalyst

to tell which of several possible solutions is the right one — the one that ‘‘makes sense.’’

For example, if the message is between English-speaking parties, then the of the possible

messages ‘‘ACCEPT THE PROPOSAL,’’ ‘‘A;LSDI FUPE ZAARED,’’ and ‘‘XXDKFJ

DDDLKJDJFFZA,’’ the first message is instantly recognized as the only one that makes

sense.  The reason that this is so obvious is because of the redundancy of natural languages.

If all of the redundancy of a message is removed, then there is no way to select one possible

answer over another, and the cryptanalyst is left baffled.

The task at hand is to try to eliminate or at least reduce the amount of redundancy

in a message before encryption, then restore the message to its original meaning after

decryption.  If all of the redundancy of a message is removed, it means that all possible

messages that can be constructed from an alphabet have meaning, and that the length of a

message is inversely proportional to its probability.  This ideal can probably be achieved

only for special circumstances with very limited messages.  For use with general

correspondence in a natural language, however, it is not practical to totally remove the

redundancy from all messages.  In fact, it is very difficult to even measure redundancy or

entropy in a natural language.  The concepts of redundancy and entropy (as defined in

communication theory texts) are useful for comparisons of various methods of redundancy

reduction.
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Most existing methods of redundancy reduction use either a manually

constructed code like the amateur radio operator’s Q-signals or an automatic method that

operates on either the alphabet or some groupings of alphabet symbols, like trigraphs.

Manual techniques are fine for their intended application, but automatic methods that are

well-suited for computer implementation are better for use with encryption.  Automatic

methods are likely to achieve good results with much greater ease of use and less

opportunities for errors.

The probability of occurrence of various letters in most natural languages are

fairly constant over a wide range of types of text, and have been studied and published

many times.  These probabilities for English letters are published in several of the texts on

cryptography listed in the references section of this thesis.  Probabilities of digraphs

(groups of two letters) and trigraphs (groups of three letters) have likewise been studied,

and are fairly constant for a given language.  Just changing the representation of trigraphs

to variable length codes that are shorter for more common trigraphs and longer for less

common trigraphs results in a substantial savings in length of an English message.

There are many such methods for compressing data that are fairly straight

forward.  This and other methods, many of which are discussed by James Storer in his

book on data compression [STO].  There are also several public domain and share-ware

programs that are available on many bulletin boards that perform data compression.  My

favorite is PKARC, written by Phil Katz [KAT].  It dynamically analyzes each input file

to determine which one of five compression methods or storing with no compression results

in the smallest file.  The compression methods used by PKARC are repetition coding,
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Huffman encoding, Ziv-Lempel-Welch compression, and two different variations on

Dynamic Ziv-Lempel-Welch compression.  PKARC also has an option that allows a rather

crude encryption of the archive files with a password. Although this doesn’t provide strong

cryptographic security, it does help to obscure the redundancy that PKARC adds back in,

in the form of cyclic redundancy checks on files and file headers.  The CRC checks and

file headers would be a good point of vulnerability when trying to cryptanalyze an archived

(compressed) file.

My feeling was that it was possible to compress natural language text even more

than was commonly being done by using linguistic parsing of the text to form a dictionary.

I was partially right.  My method does remove more redundancy and make most text files

smaller and more secure.  It won’t win any speed contests with PKARC, however, which

I recommend that you use if speed is of great importance or if you are going to compress

binary files (such as executable programs).  

In comparing the performance of SQUEEZE with PKARC, I compressed a

4,316,030 byte ASCII text file (the King James Version of the Holy Bible) to 1,312,493

bytes with a language code file of 163,236 bytes.  PKARC compressed the same file to

1,779,184 bytes.  This is a removal of 69.6% of the redundancy for SQUEEZE (or 65.8%

if you add the size of the language code file), compared with a redundancy reduction of

only 58.8% for PKARC.  This may not seem like much of a difference, but the smaller

compressed file fits on a 1.44 Megabyte 3 1/2 inch floppy disk, and the other one doesn’t.

This would be more of a significant achievement if SQUEEZE weren’t so slow.  It took

well over two hours to do this running on one of the fastest PC’s available (25 MHz 80386),
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while PKARC worked for about a minute on the task.  I believe that both the speed and

amount of redundancy reduction can be improved upon.  I am therefore publishing the

source code for what I did in Appendix B, so that someone else may be able to build upon

this idea.

B.  Linguistic Parsing

Instead of developing a Huffman code based on trigraphs or other such arbitrary

chunks of fixed length, why not develop a Huffman code based on the way people read

words?  Letter combinations made from statistically properly distributed trigraphs will

probably contain a lot of valid English words, but they will contain a lot of garbage, too.

If, however, all symbols correspond to English words (or punctuation), then a collection

of random symbols will look a lot more like English.  Of course, the arrangement of words

will probably not make sense in either group, but an intuitive analysis indicates that a code

based on linguistic parsing of words will contain a lot less redundancy than will a

fixed-length code.

To define linguistic symbols, I called any grouping of alphabetic symbols

unbroken by non-alphabetic symbols a word symbol.  I called any group of contiguous

spaces a space symbol.  I called a carriage return + line feed combination a new line symbol.

Any other punctuation and numbers were called symbols themselves.  There may be more

efficient ways to split up text into symbols, since, for example, words are almost always

followed by a space.  I also counted upper and lower case words different symbols.  It may

have been more efficient to use a modifier symbol to indicate that the following word is
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capitalized or written in all capitol letters.  Of course, if all of the input text is all upper

case, as would be the case for some telegraphic type communications systems, this is not

a concern.

Once a linguistic symbol is detected in the input text, it is encoded with its

corresponding Huffman code representation.  This is then decoded at the other end of the

communications link or after retrieving the data from storage, using the same Huffman

code.

So that the Huffman code generation does not have to be done each time a file

is compressed, an escape code that meant ‘‘the following symbol of ____ bits is not in the

code, and is to be interpreted directly’’ is used.  For these symbols, a simple suppression

of the most significant bit is used, resulting in a savings of one out of eight bits.

C.  Huffman Coding

Given a set of symbols and their associated probabilities of occurrence, a

Huffman code for those symbols is constructed by generating a tree [STO].  Start with a

set of symbols as individual nodes.  While there are still separate nodes, combine the two

nodes with the lowest probability (resolve ties arbitrarily) into a new node with a

probability equal to the sum of the probabilities of the two nodes that were combined.

Attach one of the nodes to the new node via a 1 and the other node via a 0.  After all of the

nodes are combined, the code for each symbol is the sequence of ones and zeroes assigned

to the branches of the tree starting at the root and ending at the symbol.
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Note that this algorithm results in a very similar code to a Shannon-Fano code

(which generates the tree by starting at the root and building out to the leaves), but it is

computationally more efficient to implement.

D.  Pascal Programs

The pascal programs that implement this linguistic file compression are in

appendix B.  The first one, COUNT, merely counts the frequency of occurrence of words

in sample text.  It is not necessary that the text analyzed be the same text to be compressed,

just that it be similar.  For example, better compression would be expected when using a

code based on personnel records when using that code to compress personnel records than

when compressing medical discussions.  However, the significant gains made in

compressing the more common words in the code offset the lesser compression (or even

possible expansion) encountered when words not in the code are encountered.  It is also

desirable to COUNT a large sample of text to ensure accurate word frequencies.

The second program, MAKETREE takes the frequency data from the output

file generated by COUNT and generates a Huffman code from it.  It then writes this tree

out into a file that is used by SQUEEZE.  To get reasonable speed from this program, it

uses as much memory as MS-DOS will let it for the more frequently accessed information,

and uses a temporary file for the rest of the information.  The program runs significantly

faster if this temporary file is on a RAM disk in extended or expanded memory (beyond

the basic 640 KBytes of the MS-DOS domain).

56



SQUEEZE, the third program, does the squeezing and unsqueezing of files

based on the output file of MAKETREE.  The same Huffman coding tree can be used for

many different input text files, because the statistics of English (especially when the same

types of text, such as all business letters or all technical reports) remain fairly constant even

when the content of the text conveys different meanings.  SQUEEZE handles words not

in its dictionary in stride, but highlights them as they scroll across the screen in processing

so that the user can get a feel for how well the text is matched to the code tree in use. If

only a few proper names and such are highlighted, then the code in use is a good one to

use.  If not, then perhaps a regeneration of the code would be in order.  Note that the code

file used to SQUEEZE a file must be identical to the one used to unSQUEEZE it, so it

must either be stored or sent with the file, or sent in advance and agreed upon by

communicating parties.

After testing these programs on various ASCII text files, it can be seen that

significant compression can be obtained, and that the compressed files can be recovered

reliably.  There is, however, room for improvement in the exact way that text is parsed and

in the speed of the implementation.  Nevertheless, when maximum security is desired, I

recommend first compressing an ASCII text file with SQUEEZE, then encrypting it with

CRYPTMPJ.  The code file (LANGUAGE.COD) used by SQUEEZE and the encryption

key should be sent by a separate, secure channel to the receiving party (or stored in a

physically secure location for data storage) in advance of the message.  The combination

of minimal natural redundancy in the message sent and the use of a good encryption

algorithm should be difficult to crack.
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IX.       CONCLUSION

The MPJ Encryption algorithm provides an alternative to DES that is more

secure, providing that the software and/or hardware does not get corrupted or tampered

with, and providing that the keys are managed effectively.  I have implemented and tested

the algorithm in software for the IBM PC and compatible machines.  The algorithm may

be implemented directly in hardware for faster data rates.  The MPJ Encryption Algorithm

may be used by itself, or it may be improved upon by compressing the data before

encryption.

The use of data compression in conjunction with any encryption algorithm

drastically increases the security of the encrypted data.  For natural language text, one

approach that yields improved compression over the compression of constant size blocks

of data is the compression of linguistic units, such as words.  I have achieved reversible

compression of such files to less than 35% of their original size using linguistic parsing

and a Huffman code. For binary data, such as computer programs, the use of existing

techniques, such as those in PKARC, written by Phil Katz and available on most computer

bulletin boards, are recommended.

It is hoped that the MPJ encryption algorithm, as well as some of my ideas on

data compression, will make a positive contribution towards data security, communications

privacy, and efficiency of data storage and transmission.  May God prosper those who use

this knowledge and build upon it for good.
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APPENDIX A.  MPJ in Pascal

{$R-}    {Range checking off}

{$S-}    {Stack checking off}

{$I+}    {I/O checking on}

{$N-}    {Don’t use 80x87 numeric coprocessor}

program cryptmpj;

{ Encryption designed to exceed DES in security value and be implementable on

  an IBM PC compatible machine. }

Uses Crt, Dos;  { Include screen handling & MS DOS interface functions. }

const maxinbuffer = 16;

      ap = #39;                            { Apostrophe for write statements. }

type blocks = array[0..15] of byte;             { 16 byte (128 bit) blocks. }

     stype = array[0..9,0..15,0..255] of byte;  { Holds substitution boxes. }

     ptrstype = ^stype;  { Dynamic variable required to get beyond 64K limit. }

     string80 = string[80];                     { Long character strings. }

     string15 = string[15];                     { Short character strings. }

var initial,                  { Initialiazation vector. }

    feedback,                 { Chaining feedback array. }

    key,                      { Encryption/decryption key. }

    buffer, outbuf:  blocks;  { File read/write buffers. }

    s,                        { Substitution boxes. }

    si: ptrstype;             { Inverse substitution boxes. }
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    bytesdone,                { Number of bytes done. }

    number: longint;          { Used to read in key & initialization vector. }

    que,                      { Position in file specification que. }

    i, j, k,                  { Iteration & array indexes. }

    actualread: integer;      { Actual number of bytes read in from file. }

    inputfile: file;          { File to encrypt or decrypt in place. }

    keyfile: text;            { External key file. }

    intkeyfile: file of stype; {Holds s and si. }

    keyname,                  { Name of external key file. }

    intkeyname,               { Name of internal key file. }

    path,                     { Used in parsing file specification. }

    temp: string[255];        { Used in determining encrypt/decrypt option. }

    inputfilename,            { MS-DOS name of inputfile. }

    filespec: string80;       { File specification that may include wild cards}

    fileque: array[0..15] of string80; { Names of multiple file specifications}

    name: string15;           { Name of next file to process. }

    decryption,               { True iff decryption is desired. }

    filefound: boolean;       { At least one file was found to process.}

    ch: char;                 { Character input. }

    search: searchrec;        { Used in finding matches to wild cards. }

procedure permute(x: blocks; var y: blocks);

{ This procedure is designed to make each bit of the output dependent on as

  many bytes of the input as possible, especially after repeated application.

  Each output byte takes its least significant bit from the corresponding

  input byte.  The next higher bit comes from the corresponding bit of the
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  input byte to the left.  This is done until all bits of the output byte

  are filled.  Where there is no byte to the left, the byte at the far right

  is used. }

  begin

    y[0] := (x[0] and 1) or (x[1] and 2) or (x[2] and 4) or

            (x[3] and 8) or (x[4] and 16) or (x[5] and 32) or

            (x[6] and 64) or (x[7] and 128);

    y[1] := (x[1] and 1) or (x[2] and 2) or (x[3] and 4) or

            (x[4] and 8) or (x[5] and 16) or (x[6] and 32) or

            (x[7] and 64) or (x[8] and 128);

    y[2] := (x[2] and 1) or (x[3] and 2) or (x[4] and 4) or

            (x[5] and 8) or (x[6] and 16) or (x[7] and 32) or

            (x[8] and 64) or (x[9] and 128);

    y[3] := (x[3] and 1) or (x[4] and 2) or (x[5] and 4) or

            (x[6] and 8) or (x[7] and 16) or (x[8] and 32) or

            (x[9] and 64) or (x[10] and 128);

    y[4] := (x[4] and 1) or (x[5] and 2) or (x[6] and 4) or

            (x[7] and 8) or (x[8] and 16) or (x[9] and 32) or

            (x[10] and 64) or (x[11] and 128);

    y[5] := (x[5] and 1) or (x[6] and 2) or (x[7] and 4) or

            (x[8] and 8) or (x[9] and 16) or (x[10] and 32) or

            (x[11] and 64) or (x[12] and 128);

    y[6] := (x[6] and 1) or (x[7] and 2) or (x[8] and 4) or

            (x[9] and 8) or (x[10] and 16) or (x[11] and 32) or

            (x[12] and 64) or (x[13] and 128);
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    y[7] := (x[7] and 1) or (x[8] and 2) or (x[9] and 4) or

            (x[10] and 8) or (x[11] and 16) or (x[12] and 32) or

            (x[13] and 64) or (x[14] and 128);

    y[8] := (x[8] and 1) or (x[9] and 2) or (x[10] and 4) or

            (x[11] and 8) or (x[12] and 16) or (x[13] and 32) or

            (x[14] and 64) or (x[15] and 128);

    y[9] := (x[9] and 1) or (x[10] and 2) or (x[11] and 4) or

            (x[12] and 8) or (x[13] and 16) or (x[14] and 32) or

            (x[15] and 64) or (x[0] and 128);

    y[10] := (x[10] and 1) or (x[11] and 2) or (x[12] and 4) or

            (x[13] and 8) or (x[14] and 16) or (x[15] and 32) or

            (x[0] and 64) or (x[1] and 128);

    y[11] := (x[11] and 1) or (x[12] and 2) or (x[13] and 4) or

            (x[14] and 8) or (x[15] and 16) or (x[0] and 32) or

            (x[1] and 64) or (x[2] and 128);

    y[12] := (x[12] and 1) or (x[13] and 2) or (x[14] and 4) or

            (x[15] and 8) or (x[0] and 16) or (x[1] and 32) or

            (x[2] and 64) or (x[3] and 128);

    y[13] := (x[13] and 1) or (x[14] and 2) or (x[15] and 4) or

            (x[0] and 8) or (x[1] and 16) or (x[2] and 32) or

            (x[3] and 64) or (x[4] and 128);

    y[14] := (x[14] and 1) or (x[15] and 2) or (x[0] and 4) or

            (x[1] and 8) or (x[2] and 16) or (x[3] and 32) or

            (x[4] and 64) or (x[5] and 128);

    y[15] := (x[15] and 1) or (x[0] and 2) or (x[1] and 4) or

            (x[2] and 8) or (x[3] and 16) or (x[4] and 32) or
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            (x[5] and 64) or (x[6] and 128);

  end;

procedure ipermute(x: blocks; var y: blocks);

{ This is the inverse of the procedure permute. }

  begin

    y[0] := (x[0] and 1) or (x[15] and 2) or (x[14] and 4) or

            (x[13] and 8) or (x[12] and 16) or (x[11] and 32) or

            (x[10] and 64) or (x[9] and 128);

    y[1] := (x[1] and 1) or (x[0] and 2) or (x[15] and 4) or

            (x[14] and 8) or (x[13] and 16) or (x[12] and 32) or

            (x[11] and 64) or (x[10] and 128);

    y[2] := (x[2] and 1) or (x[1] and 2) or (x[0] and 4) or

            (x[15] and 8) or (x[14] and 16) or (x[13] and 32) or

            (x[12] and 64) or (x[11] and 128);

    y[3] := (x[3] and 1) or (x[2] and 2) or (x[1] and 4) or

            (x[0] and 8) or (x[15] and 16) or (x[14] and 32) or

            (x[13] and 64) or (x[12] and 128);

    y[4] := (x[4] and 1) or (x[3] and 2) or (x[2] and 4) or

            (x[1] and 8) or (x[0] and 16) or (x[15] and 32) or

            (x[14] and 64) or (x[13] and 128);

    y[5] := (x[5] and 1) or (x[4] and 2) or (x[3] and 4) or

            (x[2] and 8) or (x[1] and 16) or (x[0] and 32) or

            (x[15] and 64) or (x[14] and 128);

    y[6] := (x[6] and 1) or (x[5] and 2) or (x[4] and 4) or
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            (x[3] and 8) or (x[2] and 16) or (x[1] and 32) or

            (x[0] and 64) or (x[15] and 128);

    y[7] := (x[7] and 1) or (x[6] and 2) or (x[5] and 4) or

            (x[4] and 8) or (x[3] and 16) or (x[2] and 32) or

            (x[1] and 64) or (x[0] and 128);

    y[8] := (x[8] and 1) or (x[7] and 2) or (x[6] and 4) or

            (x[5] and 8) or (x[4] and 16) or (x[3] and 32) or

            (x[2] and 64) or (x[1] and 128);

    y[9] := (x[9] and 1) or (x[8] and 2) or (x[7] and 4) or

            (x[6] and 8) or (x[5] and 16) or (x[4] and 32) or

            (x[3] and 64) or (x[2] and 128);

    y[10] := (x[10] and 1) or (x[9] and 2) or (x[8] and 4) or

            (x[7] and 8) or (x[6] and 16) or (x[5] and 32) or

            (x[4] and 64) or (x[3] and 128);

    y[11] := (x[11] and 1) or (x[10] and 2) or (x[9] and 4) or

            (x[8] and 8) or (x[7] and 16) or (x[6] and 32) or

            (x[5] and 64) or (x[4] and 128);

    y[12] := (x[12] and 1) or (x[11] and 2) or (x[10] and 4) or

            (x[9] and 8) or (x[8] and 16) or (x[7] and 32) or

            (x[6] and 64) or (x[5] and 128);

    y[13] := (x[13] and 1) or (x[12] and 2) or (x[11] and 4) or

            (x[10] and 8) or (x[9] and 16) or (x[8] and 32) or

            (x[7] and 64) or (x[6] and 128);

    y[14] := (x[14] and 1) or (x[13] and 2) or (x[12] and 4) or

            (x[11] and 8) or (x[10] and 16) or (x[9] and 32) or

            (x[8] and 64) or (x[7] and 128);
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    y[15] := (x[15] and 1) or (x[14] and 2) or (x[13] and 4) or

            (x[12] and 8) or (x[11] and 16) or (x[10] and 32) or

            (x[9] and 64) or (x[8] and 128);

  end;

procedure makesbox(key: blocks);

{ This procedure generates internal keys by filling the substitution box array

  s^ based on the external key given as input. }

  var i, j, k: integer;

  procedure makeonebox(i, j: integer; key: blocks);

    var pos, m, n, p, startbit, bitmask, startbyte, keybyte: word;

        empty: array[0..255] of boolean;

    begin

      for m := 0 to 255 do    { The empty array is used to make sure that }

        empty[m] := true;     { each byte of the array is filled only once. }

      startbit := 1;

      startbyte := 0;

      for n := 255 downto 128 do  { n counts the number of bytes left to fill }

        begin

          keybyte := startbyte;

          bitmask := startbit;

          m := 0;

          for p := 0 to 7 do   { m is obtained by bit selection on the key }

            begin

              m := m or (key[keybyte] and bitmask);

              bitmask := bitmask shl 1;
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              if bitmask > 128 then

                begin

                  bitmask := 1;

                  inc(keybyte);

                  if keybyte > 15 then keybyte := 0;

                end;

            end;

          pos := (n * m) div 255;  { pos is the position among the UNFILLED }

          m := 0;                  { components of the s^ array that the    }

          p := 0;                  { number n should be placed.  }

          while m < pos do

            begin

              inc(p);

              if empty[p] then inc(m);

            end;

          while not empty[p] do inc(p);

          s^[i, j, p] := n;

          empty[p] := false;

          startbit := startbit shl 1;  { The starting position of the bit  }

          if startbit > 128 then       { selection for the key is rotated  }

            begin                      { left one bit for the next n.      }

              startbit := 1;

              inc(startbyte);

              if startbyte > 15 then startbyte := 0

            end;

        end;
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      startbyte := 0;

      startbit := 1;

      for n := 127 downto 1 do         { This half of the algorithm is the   }

        begin                          { same as the upper half, except that }

          keybyte := startbyte;        { only 7 bits are selected for m.     }

          bitmask := startbit;

          m := 0;

          for p := 0 to 6 do

            begin

              m := m or (key[keybyte] and bitmask);

              bitmask := bitmask shl 1;

              if bitmask > 64 then

                begin

                  bitmask := 1;

                  keybyte := keybyte + 3;

                  if keybyte > 15 then keybyte := keybyte - 16;

                end;

            end;

          pos := (n * m) div 127;

          m := 0;

          p := 0;

          while m < pos do

            begin

              inc(p);

              if empty[p] then inc(m);

            end;
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          while not empty[p] do inc(p);

          s^[i, j, p] := n;

          empty[p] := false;

          startbit := startbit shl 1;

          if startbit > 64 then

            begin

              startbit := 1;

              inc(startbyte);

              if startbyte > 15 then startbyte := 0

            end;

        end;

      p := 0;

      while not empty[p] do

        inc(p);

      s^[i,j,p] := 0;

    end;

  begin

    new(s);

    for i := 0 to 9 do

      for j := 0 to 15 do

        begin

          write(#13,’Filling substitution boxes for round ’,i+1,’ of 10, byte ’,

                j+1,’ of 16.  ’);

          makeonebox(i, j, key);

          permute(key, key);            { Shuffle key bit positions.        }
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          for k := 0 to 15 do           { Run key through last s-box before }

            key[k] := s^[i, j, key[k]]; { making the next s-box.            }

        end;

    writeln;

  end;

procedure makesi;

{ This procedure fills the inverse substitution box array si^.  It is not

  necessary to call this procedure unless the decryption mode is used.  }

  var i, j, k: integer;

  begin

    new(si);

    for i := 0 to 9 do

      for j := 0 to 15 do

        for k := 0 to 255 do

          si^[i, j, s^[i, j, k]] := k;

  end;

{$I CRYPTINC.PAS}   { Include additional file handling & user interface. }

procedure substitute(round: integer; x: blocks; var y: blocks);

var i: integer;

begin

  for i := 0 to 15 do

    y[i] := s^[round,i,x[i]];

end;
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procedure isubst(round: integer; x: blocks; var y: blocks);

var i: integer;

begin

  for i := 0 to 15 do

    y[i] := si^[round,i,x[i]];

end;

procedure encrypt(x: blocks; var y: blocks);

{ Encrypt a block of 16 bytes. }

var z: blocks;

begin

  substitute(0, x, y);

  permute(y, z);

  substitute(1, z, y);

  permute(y, z);

  substitute(2, z, y);

  permute(y, z);

  substitute(3, z, y);

  permute(y, z);

  substitute(4, z, y);

  permute(y, z);

  substitute(5, z, y);

  permute(y, z);

  substitute(6, z, y);

  permute(y, z);
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  substitute(7, z, y);

  permute(y, z);

  substitute(8, z, y);

  permute(y, z);

  substitute(9, z, y);

end;

procedure decrypt(x: blocks; var y: blocks);

{ Decrypt a block of 16 bytes. }

var z: blocks;

begin

  isubst(9, x, y);

  ipermute(y, z);

  isubst(8, z, y);

  ipermute(y, z);

  isubst(7, z, y);

  ipermute(y, z);

  isubst(6, z, y);

  ipermute(y, z);

  isubst(5, z, y);

  ipermute(y, z);

  isubst(4, z, y);

  ipermute(y, z);

  isubst(3, z, y);

  ipermute(y, z);

  isubst(2, z, y);
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  ipermute(y, z);

  isubst(1, z, y);

  ipermute(y, z);

  isubst(0, z, y);

end;

begin

  startup;  { Initialize files, call makesbox (and makesi if required). }

  que := 0;

  while (que < 16) and (fileque[que] <> ’’) do

    begin

      filespec := fileque[que];

      inputfilename := filespec;

      path := ’’;

      repeat

        i := pos(’\’,inputfilename);

        if i > 0 then

          begin

            path := path + copy(inputfilename, 1, i);

            inputfilename := copy(inputfilename, i+1, length(inputfilename));

          end;

      until i = 0;

      findfirst(filespec, $22, search);

      while doserror = 0 do

        begin

          inputfilename := path + search.name;
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          assign(inputfile, inputfilename);

          reset(inputfile,1);

          filefound := true;

          bytesdone := 0;

          for i := 0 to 15 do

            feedback[i] := initial[i];

          if decryption then

           begin

            writeln(’Decrypting ’,inputfilename);

            while not eof(inputfile) do

              begin

                blockread(inputfile,buffer,maxinbuffer,actualread);

                encrypt(feedback,outbuf);

                { Note that decrypt is not ever called when using block

                  chaining with ciphertext feedback.  It would be called

                  if the electronic codebook mode were used, instead. }

                for i := 0 to 15 do

                  begin

                    outbuf[i] := outbuf[i] xor buffer[i];

                    feedback[i] := buffer[i]

                  end;

                seek(inputfile, filepos(inputfile) - actualread);

                blockwrite(inputfile, outbuf, actualread);

                bytesdone := bytesdone + actualread;

                write(#13, bytesdone:9,’ bytes decrypted. ’);

              end;
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            writeln(#13, bytesdone:9,’ bytes decrypted.  ’);

           end

          else

           begin

            writeln(’Encrypting ’,inputfilename);

            while not eof(inputfile) do

              begin

                blockread(inputfile,buffer,maxinbuffer,actualread);

                encrypt(feedback,outbuf);

                for i := 0 to 15 do

                  begin

                    outbuf[i] := outbuf[i] xor buffer[i];

                    feedback[i] := outbuf[i]

                  end;

                seek(inputfile, filepos(inputfile) - actualread);

                blockwrite(inputfile, outbuf, actualread);

                bytesdone := bytesdone + actualread;

                write(#13, bytesdone:9,’ bytes encrypted.  ’);

              end;

            writeln(#13, bytesdone:9,’ bytes encrypted.  ’);

           end;

          close(inputfile);

          findnext(search);

        end;

      inc(que);

    end;
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  if not filefound then writeln(’No matching files found.’);

  writeln(’Done.’);

end.
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APPENDIX B.  Linguistic Data Compression Programs

program count;

{Program to count the probability of occurances of words in text.}

uses dos, crt;

const maxbuf = 4096;

      maxstr = 15;

      ap = #39;

type wd = string[maxstr];

     ptr = ^entry;

     yarn = string[80];

     entry = record

               wrd:  wd;        {Linguistic word}

               count: longint;  {How many times this word was found}

               next: ptr;       {Next record in sequence}

             end;

var outfile,             {File with output report}

    infile: text;        {File with input text to be analyzed}

    bottom,              {Last entry record}

    newbuf,              {New entry record}

    prev: ptr;           {Previous entry record}

    buffer,              {Current entry record}

    top: array[1..255] of ptr;  {First entry record}

    words: wd;           {Word under construction}
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    temp,

    path,                    {Path of input file}

    filemask,                {File name mask}

    filespec,                {Path + name (including wild cards)}

    inname,                  {Name of input file}

    outname: yarn;           {Name of output file}

    ch: char;

    i, j, cmdparameter, topindex: integer;

    cnt: longint;

    filefound: boolean;

    inbuf, outbuf: array[1..maxbuf] of byte;

    s: searchrec;           {Record fill: array[1..21] of byte;attr:byte;time,

                              size:longint;name: string[12]}

function exist(filename: wd): boolean;

{Returns TRUE iff the file exists.}

var f: file;

begin {exist}

  assign(f,filename);

  {$I-}

  reset(f);

  {$I+}

  if IOresult = 0 then

    begin

      exist := true;

      close(f)
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    end

  else

    exist := false;

end;  {exist}

function punct(ch: char): boolean;

{TRUE iff ch is not a letter or chr(255).}

  var c:  integer;

  begin

    c := ord(ch);

    if ((c > 10) and (c <= 64)) or ((c >= 91) and (c <= 96))

    or ((c >= 123) and (c <= 254)) or ((c > 0) and (c < 10)) then

      punct := true

    else

      punct := false;

  end;

function letter(ch: char): boolean;

{TRUE iff ch is a letter A-Z or a-z.}

  var c: integer;

  begin

    c := ord(ch);

    if ((c >= 65) and (c <= 90)) or ((c >= 97) and (c <= 122)) then

      letter := true

    else

      letter := false;
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  end;

procedure parse(var words: wd; var ch: char);

{Extracts a word or item of punctuation from input file.}

  begin  {parse}

    words := ’’;

    while not (letter(ch) or punct(ch) or eof(infile)) do

      begin

        read(infile,ch);

      end;

    if punct(ch) then

      begin

        if ord(ch) = 13 then

          begin

            words := chr(255)+chr(255);

            if not eof(infile) then read(infile, ch);

          end

        else

          if ch = ’ ’ then

            begin

              words := ch;

              while (not eof(infile)) and (ch = ’ ’) and (length(words) < maxstr) do

                begin

                  read(infile,ch);

                  if ch = ’ ’ then words := words + ch;

                end;
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              if (length(words) = maxstr) and (not eof(infile)) then

                read(infile,ch);

            end

          else

            begin

              words := ch; {return one punctuation character}

              if not eof(infile) then read(infile, ch);

            end;

      end

    else

      begin

        if letter(ch) then

          begin

            words := ch;

            while (not eof(infile)) and letter(ch) and (length(words) < maxstr) do

              begin

                read(infile,ch);

                if letter(ch) then words := words + ch;

              end;

            if (length(words) = maxstr) and (not eof(infile)) then

              read(infile,ch);

          end;

      end;

  end;  {parse}

procedure update(words: wd);
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{Increments the count associated with a word.}

  begin

    topindex := ord(words[1]);

    buffer[topindex] := top[topindex];

    {Find record that matches word, if it exists.}

    while (buffer[topindex]^.wrd < words) and (buffer[topindex]^.next <> nil) do

      begin

        prev := buffer[topindex];

        buffer[topindex] := buffer[topindex]^.next

      end;

    if buffer[topindex]^.wrd = words then

      {Increment count on word that already exists}

      inc(buffer[topindex]^.count)

    else

      begin  {Add word to middle of list with count of one}

        new(newbuf);

        newbuf^.wrd := words;

        newbuf^.count := 1;

        newbuf^.next := prev^.next;

        prev^.next := newbuf;

      end;

  end;

procedure report;

{Produces a report file.}
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  var total: longint;

  begin

    assign(outfile, paramstr(1));

    rewrite(outfile);

    total := 0;

    for topindex := 1 to 255 do

      begin

        buffer[topindex] := top[topindex];

        while (buffer[topindex]^.next <> nil) do

          begin

            buffer[topindex] := buffer[topindex]^.next;

            if buffer[topindex]^.count > 0 then

              begin

                writeln(outfile,buffer[topindex]^.wrd);

                writeln(outfile,buffer[topindex]^.count);

                total := total + buffer[topindex]^.count;

              end;

          end;

      end;

    writeln(outfile, chr(255));

    writeln(outfile, ’1’);

    writeln(outfile, ’Total count:  ’,total);

    close(outfile);

  end; {report}

begin
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  clrscr;

  writeln(’  This program counts words in a set    This program may be copied freely ’);

  writeln(’  of input files to determine their     for educational use or to try it  ’);

  writeln(’  frequency of occurance.  This data    out.  If you like it, donations   ’);

  writeln(’  is then stored in a file for use by   will be accepted by the author.   ’);

  writeln(’  MAKETREE, which constructs a code     This program is believed to be    ’);

  writeln(’  tree with the Huffman algorithm.      reliable, but it is the user’,ap,’s    ’);

  writeln(’  The code tree is used by SQUEEZE.     responsibility to determine its   ’);

  writeln(’                                        fitness for use.  No liability    ’);

  writeln(’  Mike Johnson                          will be assumed by the author.    ’);

  writeln(’  P. O. Box 1151                        Copyright (C) 1988 Mike Johnson.  ’);

  writeln(’  Longmont, CO 80502-1151               All rights reserved.              ’);

  if paramcount < 2 then

    begin

      writeln;

      writeln(’Syntax: COUNT outputfilename inputfilename[s]’);

      writeln(’        input file names may include * and ?’);

      writeln(’        Input files are assumed to be ASCII text.’);

      writeln;

      writeln(’If a previous COUNT ouput file named LANGUAGE.OUT exists, then new counts’);

      writeln(’will be added to the counts in LANGUAGE.OUT.’);

      writeln(’Maximum effectiveness will be obtained if the nature of the files COUNTed’);

      writeln(’is similar to the nature of the files to be compressed with SQUEEZE.’);

    end

  else

    begin

90



      filefound := false;

      new(bottom);

      bottom^.wrd := chr(255);

      bottom^.count := 0;

      bottom^.next := nil;

      for topindex := 1 to 255 do

        begin

          new(top[topindex]);

          top[topindex]^.wrd := chr(1);

          top[topindex]^.count := 0;

          top[topindex]^.next := bottom;

          buffer[topindex] := top[topindex];

        end;

      ch := chr(0);

      words := ’                              ’;

      if exist(’LANGUAGE.OUT’) then

        begin

          assign(infile,’LANGUAGE.OUT’);

          reset(infile);

          writeln(’Reading in existing LANGUAGE.OUT.’);

          while (not eof(infile)) and (words <> chr(255)) do

            begin

              readln(infile,words);

              if words <> chr(255) then

                begin
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                  topindex := ord(words[1]);

                  readln(infile,cnt);

                  new(newbuf);

                  newbuf^.wrd := words;

                  newbuf^.count := cnt;

                  newbuf^.next := bottom;

                  buffer[topindex]^.next := newbuf;

                  buffer[topindex] := newbuf;

                  write(#13,words,’            ’);

                end;

            end;

          close(infile);

          writeln;

        end;

      {Initialize input files.}

      for cmdparameter := 2 to paramcount do

        begin

          filespec := paramstr(cmdparameter);

          filemask := filespec;

          path := ’’;

          repeat

            i := pos(’\’,filemask);

            if i > 0 then

              begin

                path := path + copy(filemask, 1, i);
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                filemask := copy(filemask, i+1, length(filemask));

              end;

          until i = 0;

          findfirst(filespec, readonly + hidden + archive, s);

          while doserror = 0 do

            begin

              filefound := true;

              inname := path + s.name;

              assign(infile, inname);

              reset(infile);

              words := ’                              ’;

  writeln(’>>>>>>>>>>>>>>>>>>>>> Processing ’,inname);

              while (not eof(infile)) and (words <> ’’) and (not keypressed) do

                begin

                  parse(words,ch);     {Find word or punctuation}

                  if words = chr(255)+chr(255) then

                    writeln

                  else

                    write(words);

                  if length(words) > 0 then

                    update(words);     {Increment word counter}

                end;

              close(infile);

              findnext(s);

            end;

        end;
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      if not filefound then writeln(’No matching files found.’);

      report;

    end;

end.
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{$R+}

{$M 3072,4096,655360}

program maketree;

uses crt;

const maxstr = 15;

      ap = #39;

type wd = string[maxstr];

     yarn = string[80];

     mem = ^mementry;

     entry = record

               wrd:  wd;        {Which linguistic word in input file}

               memory: mem;     {Corresponding mementry.}

             end;

     mementry = record

                  count: longint; {Word count.}

                  onezero: byte;  {Is this record pointed to by 1 or 0?}

                  root,           {Position of record nearer root.}

                  next:  mem;     {Position of next record.}

                end;

var temp: file of entry; {Temporary file}

    infile: text;        {File with input text to be analyzed}

    buffer,              {Current entry record}
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    newbuf: entry;       {New entry record}

    mtop,

    mbottom,

    mbuffer,

    mnewbuf,

    mprev: mem;

    inname,              {Name of input file}

    outname,             {Name of output file}

    words: wd;           {Word under construction}

    ch: char;

    cnt1,

    cnt2,

    cnt:  longint;

    i, j: integer;

    tempname: yarn;

function exist(filename: wd): boolean;

{Returns TRUE iff the file exists.}

var f: file;

begin {exist}

  assign(f,filename);

  {$I-}

  reset(f);

  {$I+}

  if IOresult = 0 then

    begin
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      exist := true;

      close(f)

    end

  else

    exist := false;

end;  {exist}

procedure fanno;

  begin

    cnt1 := 0;

    repeat

      {Find smallest two records.}

      mprev := mtop^.next;

      mbuffer := mprev^.next;

      {Combine lowest 2 probabilities of counts.}

      mtop^.next := mbuffer^.next;

      new(mnewbuf);

      mnewbuf^.count := mbuffer^.count + mprev^.count;

      mnewbuf^.onezero := 2;

      mnewbuf^.root := nil;

      mprev^.root := mnewbuf;

      mprev^.onezero := 1;

      mbuffer^.root := mnewbuf;

      mbuffer^.onezero := 0;
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      {Place combined entry in proper place in chain.}

      mbuffer := mtop;

      repeat

        mprev := mbuffer;

        mbuffer := mbuffer^.next;

      until (mnewbuf^.count <= mbuffer^.count);

      mprev^.next := mnewbuf;

      mnewbuf^.next := mbuffer;

      {Check for completion.}

      inc(cnt1);

      write(#13,cnt1,’ nodes combined.  ’);

    until (cnt1 >= cnt2);

  end;  {fanno}

procedure placeit;

  begin

        write(#13,cnt:11,’ ’,words,’          ’);

        mbuffer := mtop;

        repeat

          mprev := mbuffer;

          mbuffer := mbuffer^.next;

        until mbuffer^.count >= cnt;

        new(mnewbuf);

        newbuf.wrd := words;
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        newbuf.memory := mnewbuf;

write(temp,newbuf);

        mnewbuf^.count := cnt;

        mnewbuf^.onezero := 2;

mnewbuf^.root := nil;

        mnewbuf^.next := mbuffer;

        mprev^.next := mnewbuf;

  end;

procedure filegen;

var cod: file of byte;

    ascnum: yarn;

    c: char;

    b, d: byte;

    i, shifter: integer;

  begin

    assign(cod,outname);

    rewrite(cod);

    reset(temp);

    repeat

      read(temp,buffer);

      mbuffer := buffer.memory;

      if buffer.wrd <> ’’ then

begin

          for i := 0 to length(buffer.wrd) do
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            begin

              b := ord(buffer.wrd[i]);

              write(cod,b);

            end;

          ascnum := ’’;

          while (mbuffer^.root <> nil) do

            begin

              if mbuffer^.onezero = 0 then

                ascnum := ascnum + ’0’

              else

                ascnum := ascnum + ’1’;

              mbuffer := mbuffer^.root;

            end;

          d := ord(ascnum[0]);

          write(cod,d);

          shifter := 1;

          b := 0;

          for i := d downto 1 do

            begin

              if ascnum[i] = ’1’ then b := b + shifter;

              shifter := shifter shl 1;

              if shifter >= 256 then

                begin

                  write(cod,b);

                  b := 0;

                  shifter := 1
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                end;

            end;

          if shifter > 1 then write(cod,b);

          write(#13,buffer.wrd:maxstr,’ = ’,ascnum,’                           ’);

        end;

    until eof(temp);

    close(cod);

    close(temp);

    erase(temp);

  end;

begin

  clrscr;

  writeln(’  MAKETREE takes the word count         This program may be copied freely ’);

  writeln(’  data created by COUNT and creates     for educational use or to try it  ’);

  writeln(’  a code tree using the Huffman         out.  If you like it, donations   ’);

  writeln(’  algorithm.  The resulting code tree   will be accepted by the author.   ’);

  writeln(’  is used by SQUEEZE when it            This program is believed to be    ’);

  writeln(’  compresses ASCII text files.          reliable, but it is the user’,ap,’s    ’);

  writeln(’                                        responsibility to determine its   ’);

  writeln(’                                        fitness for use.  No liability    ’);

  writeln(’  Mike Johnson                          will be assumed by the author.    ’);

  writeln(’  P. O. Box 1151                        Copyright (C) 1988 Mike Johnson.  ’);

  writeln(’  Longmont, CO 80502-1151               All rights reserved.              ’);

  if paramcount < 2 then

    begin
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      writeln(’Syntax: MAKETREE infile outfile [tempfile]’);

      writeln(’                 infile is input file name (generated by COUNT)’);

      writeln(’                 outfile is output file name to be used by SQUEEZE’);

      writeln(’                 tempfile is filename to use for temporary file’);

      writeln(’The temporary file is best put on a RAM disk in extended or expanded memory,’);

      writeln(’but a hard disk or even a floppy will do if that is the fastest you have.’);

      writeln(’Don’,ap,’t use a RAM disk in conventional (lower 640K) memory, as this program’);

      writeln(’already uses most of that in generating the coding tree.’);

    end

  else

    begin

      inname := paramstr(1);

      outname := paramstr(2);

      if exist(inname) then

        begin

          assign(infile,inname);

          reset(infile);

        end

      else

        begin

          writeln(’Unable to open ’,inname);

          exit

        end;

      if paramcount > 2 then

        tempname := paramstr(3)

      else

102



        tempname := ’ZYXWVUTS.$$$’;

      assign(temp,tempname);

      {$I- }

      rewrite(temp);

      {$I+ }

      if ioresult <> 0 then

        begin

          writeln(’I/O error attempting to open temporary file ’,tempname);

          halt;

        end;

      new(mtop);

      new(mbottom);

      mtop^.count := -1;

      mtop^.onezero := 2;

      mtop^.root := nil;

      mtop^.next := mbottom;

      mbottom^.count := 2147483647;

      mbottom^.onezero := 2;

      mbottom^.root := nil;

      mbottom^.next := nil;

      cnt2 := 2;

      writeln(’Reading in and sorting word frequency data.’);

      repeat

        readln(infile,words);

        readln(infile,cnt);

        placeit;
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        inc(cnt2);

      until (words = chr(255)) or eof(infile);

      close(infile);

      words := chr(255) + chr(255);

      placeit;

      words := words + chr(255);

      placeit;

      words := words + chr(255);

      placeit;

      writeln(#13,cnt2,’ nodes to add to Huffman coding tree.                  ’);

      fanno;

      writeln;

      writeln(’Writing output file.’);

      filegen;

      writeln(#13,’Done.                                          ’);

    end;

end.
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{$R+}

{$M 2048,4096,655360}

program squash;

uses dos, crt;

const maxbuf = 4096;

      maxstr = 15;

      ap = #39;

type wd = string[maxstr];

     yarn = string[80];

     ptr = ^entry;

     entry = record

               wrd:  wd;        {Linguistic word}

               count:  byte;    {How many bits in code}

               code: longint;   {Code (right justified in 4 byte integer)}

               next: ptr;       {Pointer to next entry}

             end;

var outfile,                 {File with output report}

    infile: file;            {File with input text to be analyzed}

    temp,

    path,                    {Path of input file}

    filemask,                {File name mask}

    filespec,                {Path + name (including wild cards)}
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    inname,                  {Name of input file}

    outname: yarn;           {Name of output file}

    words: wd;               {Word under construction}

    ch: char;

    top,

    bottom: array[1..32] of ptr;

    last,

    newbuf,

    newline,

    endfile,

    buf: ptr;

    mask,

    masked,

    place,

    long,

    cd,

    cnt:  longint;

    infilepos,              {Current position in input file buffer}

    inbitpos,               {Current bit mask in input file buffer}

    inbytes,                {Actual number of bytes read}

    outfilepos,             {Current position in output file buffer}

    outbitpos,              {Current bit mask in output file buffer}

    outbytes:  word;        {Actual number of bytes to write}

    cmdparameter,           {Command line parameter number}

    start,                  {Starting point for command line file name scan}

    strlen,
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    bite,

    b, i, j, k, m: integer;

    squish, filefound, done: boolean;

    outbite:  byte;

    inbuf,

    outbuf: array[1..maxbuf] of byte;

    s: searchrec;           {Record fill: array[1..21] of byte;attr:byte;time,

                              size:longint;name: string[12]}

function exist(filename: yarn): boolean;

{Returns TRUE iff the file exists.}

var f: file;

begin {exist}

  assign(f,filename);

  {$I-}

  reset(f);

  {$I+}

  if IOresult = 0 then

    begin

      exist := true;

      close(f)

    end

  else

    exist := false;

end;  {exist}
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procedure getbit(var b: integer);

begin

  if infilepos = 0 then

    begin

      if eof(infile) then

        done := true

      else

        begin

          blockread(infile, inbuf, maxbuf, inbytes);

          infilepos := 1;

          inbitpos := 1;

        end;

    end;

  if not done then

    begin

      b := inbuf[infilepos] and inbitpos;

      if b > 0 then b := 1;

      inbitpos := inbitpos shl 1;

      if inbitpos > 128 then

        begin

          inbitpos := 1;

          inc(infilepos);

          if infilepos > inbytes then infilepos := 0;

        end;

    end;

end;
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procedure getbite(var b: integer);

begin

  if infilepos = 0 then

    begin

      if eof(infile) then

       begin

        done := true;

        b := 0

       end

      else

        begin

          blockread(infile, inbuf, maxbuf, inbytes);

          infilepos := 1;

        end;

    end;

  if not done then

    begin

      if inbitpos > 1 then

        begin

          inc(infilepos);

          writeln(’Bit sync error in getbite!’)

        end;

      b := inbuf[infilepos];

      inbitpos := 1;

      inc(infilepos);
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      if infilepos > inbytes then infilepos := 0;

    end;

end;

procedure putbit(b: integer);

begin

  if (b > 1) or (b < 0) then writeln(’Bad data passed to putbit.’);

  outbite := outbite or (outbitpos * b);

  outbitpos := outbitpos shl 1;

  if outbitpos > 128 then

    begin

      inc(outfilepos);

      outbuf[outfilepos] := outbite;

      outbite := 0;

      outbitpos := 1;

      if outfilepos >= maxbuf then

        begin

          blockwrite(outfile, outbuf, maxbuf, outbytes);

          if outbytes < maxbuf then

            begin

              writeln(’Disk full error.’);

              done := true;

            end;

          outfilepos := 0;

        end;

    end;
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end;

procedure putbite(b: integer);

begin

  if (b > 255) or (b < 0) then writeln(’Bad data passed to putbite.’);

  outbite := b;

  inc(outfilepos);

  outbuf[outfilepos] := outbite;

  outbite := 0;

  outbitpos := 1;

  if outfilepos >= maxbuf then

    begin

      blockwrite(outfile, outbuf, maxbuf, outbytes);

      if outbytes < maxbuf then

        begin

          writeln(’Disk full error.’);

          done := true;

        end;

      outfilepos := 0;

    end;

end;

procedure flushbit;

begin

  if outbitpos > 1 then

    begin
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      inc(outfilepos);

      outbuf[outfilepos] := outbite;

    end;

  blockwrite(outfile, outbuf, outfilepos, outbytes);

  outbite := 0;

  outbitpos := 1;

  outfilepos := 0;

end;

function punct(ch: char): boolean;

{TRUE iff ch is not a letter or chr(255).}

  var c:  integer;

  begin

    c := ord(ch);

    if ((c > 10) and (c <= 64)) or ((c >= 91) and (c <= 96))

    or ((c >= 123) and (c <= 254)) or ((c > 0) and (c < 10)) then

      punct := true

    else

      punct := false;

  end;

function letter(ch: char): boolean;

{TRUE iff ch is a letter A-Z or a-z.}

  var c: integer;

  begin

    c := ord(ch);
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    if ((c >= 65) and (c <= 90)) or ((c >= 97) and (c <= 122)) then

      letter := true

    else

      letter := false;

  end;

procedure parse(var words: wd; var ch: char);

{Extracts a word or item of punctuation from input file.}

  var byt: integer;

  begin  {parse}

    words := ’’;

    while not (letter(ch) or punct(ch) or done) do

      begin

        getbite(byt);

        ch := chr(byt);

      end;

    if punct(ch) then

      begin

        if ord(ch) = 13 then

          begin

            words := chr(255)+chr(255);

            if not done then begin getbite(byt); ch := chr(byt) end;

          end

        else

113



          if ch = ’ ’ then

            begin

              words := ch;

              while (not done) and (ch = ’ ’) and (length(words) < maxstr) do

                begin

                  getbite(byt);

                  ch := chr(byt);

                  if ch = ’ ’ then words := words + ch;

                end;

              if (length(words) = maxstr) and (not done) then

                begin

                  getbite(byt);

                  ch := chr(byt)

                end;

            end

          else

            begin

              words := ch; {return one punctuation character}

              if not done then begin getbite(byt); ch := chr(byt) end;

            end;

      end

    else

      begin

        if letter(ch) then

          begin

            words := ch;
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            while (not done) and letter(ch) and (length(words) < maxstr) do

              begin

                getbite(byt);

                ch := chr(byt);

                if letter(ch) then words := words + ch;

              end;

            if (length(words) = maxstr) and (not done) then

              begin

                getbite(byt);

                ch := chr(byt)

              end;

          end;

      end;

  end;  {parse}

begin

  clrscr;

  writeln(’  SQUEEZE is designed to remove         This program may be copied freely ’);

  writeln(’  redundancy from ASCII text files,     for educational use or to try it  ’);

  writeln(’  making them smaller for transmission  out.  If you like it, donations   ’);

  writeln(’  and storage.  It also improves the    will be accepted by the author.   ’);

  writeln(’  security of files encrypted after     This program is believed to be    ’);

  writeln(’  SQUEEZING.  It uses LANGUAGE.COD,     reliable, but it is the user’,ap,’s    ’);

  writeln(’  created with COUNT and MAKETREE.      responsibility to determine its   ’);

  writeln(’                                        fitness for use.  No liability    ’);

  writeln(’  Mike Johnson                          will be assumed by the author.    ’);
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  writeln(’  P. O. Box 1151                        Copyright (C) 1988 Mike Johnson.  ’);

  writeln(’  Longmont, CO 80502-1151               All rights reserved.              ’);

  if (paramcount < 3) then

    begin

      writeln;

      writeln(’Syntax: SQUEEZE a|s|u|x outputfile inputfile(s)’);

      writeln(’a and s both mean add or squash, u and x both mean unsquash or extract.’);

      writeln(’Input and output files must be different.’);

      writeln(’Input file name(s) may include wild cards.’);

      writeln(’LANGUAGE.COD  (made with MAKETREE) must be in default directory.’);

    end

  else

    begin

      {Read in language code dictionary.}

      assign(infile,’LANGUAGE.COD’);

      reset(infile,1);

      infilepos := 0;

      inbitpos := 1;

      done := eof(infile);

      newline := nil;

      last := nil;

      endfile := nil;

      if paramcount >= 1 then

        temp := paramstr(1)

      else

        temp := ’X’;
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      temp := upcase(temp[1]);

      if (temp = ’A’) or (temp = ’S’) then

        squish := true

      else

        squish := false;

      writeln(’Reading in LANGUAGE.COD.’);

      for i := 1 to 32 do

        begin

          new(top[i]);

          top[i]^.wrd := ’’;

          top[i]^.count := 0;

          top[i]^.code := 0;

          top[i]^.next := nil;

          bottom[i] := top[i];

        end;

      last := nil;

      while not done do

        begin

          new(newbuf);

          newbuf^.wrd := ’’;

          getbite(strlen);

          if not done then

            begin

              for i := 1 to strlen do

                begin

                  getbite(bite);

117



                  newbuf^.wrd := newbuf^.wrd + chr(bite);

                end;

              getbite(bite);

              newbuf^.count := bite;

              getbite(bite);

              newbuf^.code := bite;

              if newbuf^.count > 8 then

                begin

                  getbite(bite);

                  long := bite;

                  newbuf^.code := newbuf^.code + (long shl 8);

                  if newbuf^.count > 16 then

                    begin

                      getbite(bite);

                      long := bite;

                      newbuf^.code := newbuf^.code + (long shl 16);

                      if newbuf^.count > 24 then

                        begin

                          getbite(bite);

                          long := bite;

                          newbuf^.code := newbuf^.code + (long shl 24);

                        end;

                    end;

                end;

              newbuf^.next := nil;

              if newbuf^.wrd = chr(255) then
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                begin

                  last := newbuf;

                end

              else

                if newbuf^.wrd = chr(255) + chr(255) then

                  newline := newbuf

                else

                  if newbuf^.wrd = chr(255) + chr(255) + chr(255) then

                    endfile := newbuf;

              if squish then

                begin

                  if ord(newbuf^.wrd[1]) > 107 then

                    i := length(newbuf^.wrd) + 15

                  else

                    i := length(newbuf^.wrd)

                end

              else

                i := newbuf^.count;

              bottom[i]^.next := newbuf;

              bottom[i] := newbuf;

              write(#13,newbuf^.wrd,’                     ’);

            end;

        end;

      if newline = nil then

        writeln(’Error:  newline symbol not in LANGUAGE.COD! ’);

      writeln;

119



      close(infile);

      {Initialize input & output files and global variables.}

      outname := paramstr(2);

      filefound := false;

      assign(outfile,outname);

      if exist(outname) then

        begin

          reset(outfile,1);

          seek(outfile,filesize(outfile))

        end

      else

        rewrite(outfile,1);

      outfilepos := 0;

      outbitpos := 1;

      outbite := 0;

      if squish then start := 3 else start := 2;

      for cmdparameter := start to paramcount do

        begin

          filespec := paramstr(cmdparameter);

          filemask := filespec;

          path := ’’;

          repeat

            i := pos(’\’,filemask);

            if i > 0 then
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              begin

                path := path + copy(filemask, 1, i);

                filemask := copy(filemask, i+1, length(filemask));

              end;

          until i = 0;

          findfirst(filespec, readonly + hidden + archive, s);

          while doserror = 0 do

            begin

              filefound := true;

              inname := path + s.name;

              assign(infile, inname);

              reset(infile,1);

              infilepos := 0;

              inbitpos := 1;

              done := eof(infile);

              {Perform compression on input file(s).}

              if squish then

               begin

                writeln(’Compressing ’,inname);

                ch := chr(0);

                while not done do

                  begin

                    parse(words,ch);     {Find word or punctuation}

                    if length(words) > 0 then

                      begin

121



                        if ord(words[1]) > 107 then

                          buf := top[length(words) + 15]

                        else

                          buf := top[length(words)];

                        mask := 1;

                        while (buf^.wrd <> words) and (buf^.next <> nil) do

                          buf := buf^.next;

                        if buf^.wrd <> words then

                          begin

                            highvideo;

                            if words = chr(255) + chr(255) then

                              writeln(’Newline code not found in tree! ’)

                            else

                              write(words);

                            for i := 1 to last^.count do

                              begin

                                masked := last^.code and mask;

                                mask := mask shl 1;

                                if masked = 0 then

                                  putbit(0)

                                else

                                  putbit(1);

                              end;

                            for i := 0 to length(words) do

                              begin

                                for j := 0 to 6 do
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                                  begin

                                    b := (ord(words[i]) shr j) and 1;

                                    putbit(b)

                                  end;

                              end;

                          end

                        else

                          begin

                            for i := 1 to buf^.count do

                              begin

                                masked := buf^.code and mask;

                                mask := mask shl 1;

                                if masked = 0 then

                                  putbit(0)

                                else

                                  putbit(1);

                              end;

                            lowvideo;

                            if words = chr(255) + chr(255) then

                              writeln

                            else

                              write(buf^.wrd);

                          end;

                    end;

                  end;

                mask := 1;
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                for i := 1 to endfile^.count do

                  begin

                    masked := endfile^.code and mask;

                    mask := mask shl 1;

                    if masked = 0 then

                      putbit(0)

                    else

                      putbit(1);

                  end;

               end

              else

                {Decompress input file.}

                begin

                  writeln(’Decompressing ’,inname);

                  cd := 0;

                  mask := 1;

                  cnt := 0;

                  while not done do

                    begin

                      getbit(b);

                      if b > 0 then cd := cd or mask;

                      mask := mask shl 1;

                      if mask <= 0 then writeln(’Error: code too long.’);

                      inc(cnt);

                      buf := top[cnt];
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                      while (buf^.next <> nil) and

                            ((cnt <> buf^.count) or (cd <> buf^.code)) do

                        buf := buf^.next;

                      if (cnt = buf^.count) and (cd = buf^.code) then

                        begin

                         if buf = endfile then

                          done := true

                         else

                          if buf^.wrd = chr(255) then

                            begin

                              j := 0;

                              for k := 0 to 6 do

                                begin

                                  getbit(b);

                                  j := j + (b shl k);

                                end;

                              for i := 1 to j do

                                begin

                                  m := 0;

                                  for k := 0 to 6 do

                                    begin

                                      getbit(b);

                                      m := m + (b shl k)

                                    end;

                                  putbite(m);

                                  highvideo;
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                                  write(chr(m));

                                end;

                            end

                          else

                           if buf^.wrd = chr(255) + chr(255) then

                            begin

                             writeln;

                             putbite(13);

                             putbite(10);

                            end

                           else

                            begin

                              for i := 1 to length(buf^.wrd) do

                                begin

                                  b := ord(buf^.wrd[i]);

                                  putbite(b)

                                end;

                              lowvideo;

                              write(buf^.wrd)

                            end;

                          cd := 0;

                          cnt := 0;

                          mask := 1;

                        end;

                    end;

                end;
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              {Finish up or loop back for more work to do.}

              flushbit;

              close(infile);

              findnext(s);

            end;

        end;

      if not filefound then writeln(’No matching files found.’);

      flushbit;

      close(outfile);

    end;

end.

{That’s all, folks!}
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